Andrew Mytko Aliaksei Tsishurou

OTTO NON NON GUERICKE

Semester in OvGU 2015-2016

CONTENTS

- How to get into the program?
- Survival in Magdeburg
- Studying in OvGU
- Computer Science
- Mathematics
- Quadrocopters
- Questions

How to become a part of the program?

Before last year

- academic achievements and good reputacy (usually only best students go)
- participation in the earlier stages of the program (week-trips, 1,2months' practices)
- attending lessons of German

At last year

- application to KM-stuff and getting permission
- collecting lots of documents
- multiple visits to the Embassy
- tickets to Germany!

ACCOMODATION

- appartment is like a flat
- with almost everything you need
- in walking distance to canteen and classes
- in IKUS building
- next to library and sport ground

Live \neq eviL

UNIVERSITY FACILITIES

- scholarship ≈ 15 your current scholarships
- cheap mensa (canteen) with tasty food
- large convenient library
- student card = free local transport
- free German classes for foreigners
- free sport classes
- IKUS parties

LIBRARY

- Books, PCs
- Wi-Fi
- Web-catalogue
- Ideal for studying
- 8-23h

<u>ub.ovgu.de</u>

SUBJECTS SELECTION

Given: list of all possible subjects by prof. Girlich

Find: interesting subjects with appropriate sum of points

Problem: intersections and windows in timetable

Solution: maximal independent set in graph of all subjects

SUBJECTS SELECTION

Let's assume that you want subjects necessarily containing Bayseian Networks (BN) and Swarm Intelligence (SI). Then some possible combinations without timetable problems are:

POINT SYSTEM

failed!

Marks (best → worst):

1.0, 1.3, 1.5, 1.7, 2.0, 2.7, 3.0, 3.3, 3.7, 4.0, **5.0**

If mark ≠ 5.0 *you receive* **points**

Points (usually):

one class per week (SWS) costs **3 points** one subject of mathematics - **9 or 6 points** comp. science - **6 points**

You need finally 30 points to pass semester!

E.g.:

9+9+6+6 = 30 6+6+6+6+6 = 30

EXAMINATIONS

	Oral	Written	Presentation
Subject:	Mathematics	Computer Science	Team Projects
Duration, min:	30-45	120	20
Language:	German/English	English	English/German
Features:	 tête-à-tête no preparation no strict proofs covering of all material 	almost impossible to cheat	like our course/diploma thesis defence

OUR CHOSEN STUDIES

- Bayesian Networks
- Swarm Intelligence
- Survival Analysis
- Linear Statistical Models
- SwarmLab Team Project
- German Language for Foreigners

COMPUTER SCIENCE

Swarm intelligence

Prof. Sanaz Mostaghim

- English
- 1 lecture per week
- 1 exercise per week
- 6 final points

Bayesian Networks

Prof. Rudolf Kruse

- English
- 1 lecture per week
- 1 exercise per week
- 6 final points

MATHEMATICS

Survival Analysis

Prof. Waltraud Kahle

- German
- 2 lectures per week
- 4 exercises per semester
- 6 final points

Linear Statistical Models

Dr. Heiko Grossmann

- German
- 2 lectures per week
- 4 exercises per semester
- 6 final points

BAYESIAN NETWORKS

BN: EXAMPLE

Available information:

"Malaria is much less likely than flu." "Flu causes cough and fever." "Nausea can indicate malaria as well as flu." "Nausea never indicated pneunomia before."

Possible questions/inferences:

"The patient has fever. How likely is he to have malaria?" "How much more likely does flu become if we can exclude malaria?"

BN: EXAMPLE

How does D depend on A?

- given apriori marginal probabilities
- using propagation via messages in network

With 100 diseases and 200 symptoms, there would be about 10^62 different scenarios for which we have to estimate the probability.

BAYESIAN NETWORKS

- interesting course with regular nontrivial exercises
- combination of probability and graph theory
- has many useful applications (rarely in Belarus)
- connected with machine learning and data science
- only cource with requared homework
- students were much educated than those at other courses
- we've spent the *most* time and got the *worst* marks

SWARM INTELLIGENCE

SWARM INTELLIGENCE

A collective behavior of simple entities having simple rules with ability of local interactions. The swarm produces a global and intelligent behavior which is unknown to the single entities: "The whole is more than the sum of its parts!"

This global behavior is known as emergence or emergent effect.

Emergent effects may be desired or undesired

- How can we generate positive emergence?
- How can we prevent negative emergence?

Examples:

- Ant roads
- Economy
- "Green wave" by traffic lights
- Traffic jam on the highway
- Internet

Example: Swarm Robotics

- Cost
- Robust against failures
- Flexible
- Scalable
- Easy to re-program

Note: These can substitute one agent for only some specific tasks.

New challenges:

- Small hardware
- Communications
- Self-organization
- Coordination mechanisms
- Collaborative learning

SWARM INTELLIGENCE

- unusual and interesting course with many applications
- has intersection with Malevich's course NN&GA
- you need no backgroung
- charismatic lecturer with perfect English
- we've spent the *least* time and got the *best* marks

SURVIVAL ANALYSIS

SA: EXAMPLE

Given: sample of refrigerators

Task: set guarantee period such that at least 95% of refrigerators will work after that

Problem: we don't have time to wait till sample breaks without impact

Solution: different methods of survival analysis (e.g. stress-testing, Cox-model)

SURVIVAL ANALYSIS

- there're not so many such courses and covered material
- direct applications in medicine, social science, insurance
- it needs basic but *strong* statistical background
- there will be intro in R and its survival package
- bonus: professor speaks Russian

LINEAR STATISTICAL MODELS

LSM: EXAMPLE

Given: two groups of patients, one recieve new drugs.

Task: figure out the effectiveness of drugs.

Problem: in some situations we cannot dispose of other differences between groups

Solution: analysis of variance (ANOVA)

LINEAR STATISTICAL MODELS

- real oldschool mathematical subject
- combination of statistics, algebra and geometry
- a strict mathematical exposition of statistical models
- common methods in rather different linear models
- a large set of materials in English/German/Russian
- applications in machine learning and data analysis

Pr. Sanaz Mostaghim

remote control robotics flight swarm wall-avoidance CODTERS artificial intelligence robust sonars optimization **Christoph Steup**

Topic: Robust Multi-Copter Flight

1 official meeting per week

much more hours of real work per week

6 final points

Copters: EXPECTATION

Copters: REALITY

ROBUST MULTI-COPTER FLIGHT

- real team-project with time & code organization in GitHub
- better understanding of copter's physic and "hardware"
- typical data analysis: do data and give result
- team of SwarmLab are super-educated geeks
- sometimes it was very funny

Motivation: Flights are not always robust

LEISURE TIME

- diploma thesis writing [*sarcasm*]
- basketball / football several sport grounds are around
- bicycles main type of transport
- shopping *sales-sales-sales*
- self-education *deeper in studies, online-courses*
- TRAVELLING!!! especially cheap

TRAVELLING

We visited not so much as in summer trip, but...

VilniusBrussels OstendeLeipzig ViennaBruges Amsterdam WittenbergThale Quedlinburg GhentHamburgErfurt BerlinCologne Hannover KatowiceWarsaw Dresden

EXPECTED DISADVANTAGES

- you will lose last semester of normal BSU studies
- you can't spend this time to find a job
- after coming back you will have terrible March (... and April, and, probably, May)
- you will start counting floors starting with 0

Now it's time for you to ask questions!

