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Introduction

Introduction

How to solve di�erential equation?

y ′′′ +
3y ′

y
(y ′′ − y ′)− 3y ′′ + 2y ′ − y = 0 (1)

It admits rich Lie symmetry group, however Maple solver dsolve outputs

On the other hand, Eq. (1) admits the linearization [Ibragimov, 2009]

u′′′ − 2
t3 u = 0 , t = exp(x) , u = y2
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Introduction

Prehistory

The linearization problem for a second-order ODE

y ′′ + f (x , y , y ′) = 0 (2)

was solved by Sophus Lie. He showed that only equations of
the following form are linearizable by point transformations:

f = F3(x , y)(y ′)3 + F2(x , y)(y ′)2 + F1(x , y) y ′ + F0(x , y) . (3)

Theorem.

Equation (2) is linearizable by point transformation if and only if

3(F3)xx − 2(F2)xy + (F1)yy − 3F1(F3)x + 2F2(F2)x

−3F3(F1)x + 3F0(F3)y + 6F3(F0)y − F2(F1)y = 0 , (4)

(F2)xx − 2(F1)xy + 3(F0)yy − 6F0(F3)x + F1(F2)x

−3F3(F0)x + 3F0(F2)y + 3F2(F0)y − 2F1(F1)y = 0 .
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Underlying Equations

In this paper we consider ODEs of the form

y (n) + f (x , y , y ′, . . . , y (n−1)) = 0 , y (k) :=
dk y
dxk (5)

with f ∈ C(x , y , y ′, . . . , y (n−1)) solved with respect to the highest order
derivative.

Given an ODE of the form (5), our aim is to check the existence of an
invertible transformation

u = φ(x , y) , t = ψ(x , y) (6)

which maps (5) into a linear n-th order homogeneous equation

u(n)(t) +
n−1∑
k=0

ak (t) u(k)(t) = 0 , u(k) :=
dk u
dtk . (7)

The invertibility of (6) is provided by the inequation

J := φxψy − φyψx 6= 0 .
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Symmetry Analysis of Di�erential Equations

Lie Symmetry

One way to check the linearizability of Eq. (5) is to follow the classical
approach by Lie to study the symmetry properties of Eq. (5) under
one-parameter group of transformation [Lie, 1883]

De�nition.

Set of transformation Ta : x̃ = Φ(x , y ,a), ỹ = Ψ(x , y ,a) is called
one-parameter group of transformation of di�erential equation

F (x , y , y ′, ..., y (n)) = 0

if
1) it transforms any solution y(x) in old variables (x , y) to solution ỹ(x̃) in
new variables (x̃ , ỹ),
2) it is a group: TaTb = Ta+b, where (a � group parameter).
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2) it is a group: TaTb = Ta+b, where (a � group parameter).

dmitry.lyakhov@kaust.edu.sa Algorithmic Linearizability for ODE December 21, 2017 6 / 18



Symmetry Analysis of Di�erential Equations

Lie Symmetry

One way to check the linearizability of Eq. (5) is to follow the classical
approach by Lie to study the symmetry properties of Eq. (5) under
one-parameter group of transformation [Lie, 1883]

De�nition.

Set of transformation Ta : x̃ = Φ(x , y ,a), ỹ = Ψ(x , y ,a) is called
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Symmetry Analysis of Di�erential Equations

In�nitesimal Transformation

The key point is to study vector �eld of in�nitesimal transformation, which is
the �rst term in Taylor expansion of one-parameter group of transformation

x̃ = x + ε ξ(x , y) +O(ε2) , ỹ = y + ε η(x , y) +O(ε2) . (8)

In�nitesimal symmetry operators

X := ξ(x , y) ∂x + η(x , y) ∂y

form Lie algebra L under Lie bracket

[X1,X2] = X1X2 −X2X1.

Sophus Lie showed that Lie algebra of n-dimensional ODE satis�es

if n = 1, then dim(L) =∞
if n = 2, then dim(L) ≤ 8
if n > 2, then dim(L) ≤ n + 4
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Linearization Test I

Basic Theorem

Linear homogeneous n-th order equation (7) with variable coe�cients admits
the Lie point symmetry group

t̃ = t , ũ = u + ci · vi (t), i = 1...n
t̃ = t , ũ = cn+1 · u

where ci , cn+1 are constants (the group parameters) and {vi (t)} is the
fundamental solution of (7).

The symmetry algebra has the n-dimensional abelian Lie subalgebra

Ln+1 := {Xi := vi (t) ∂u (i = 1, ..,n), Xn+1 := u ∂u } . (9)

Theorem [Mahomed,Leach, 1991]

A necessary and su�cient condition for the linearization of (5) with n ≥ 3 via
a point transformation is the existence of an abelian n-dimensional subalgebra
in symmetry algebra.
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t̃ = t , ũ = u + ci · vi (t), i = 1...n
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t̃ = t , ũ = cn+1 · u

where ci , cn+1 are constants (the group parameters) and {vi (t)} is the
fundamental solution of (7).

The symmetry algebra has the n-dimensional abelian Lie subalgebra

Ln+1 := {Xi := vi (t) ∂u (i = 1, ..,n), Xn+1 := u ∂u } . (9)

Theorem [Mahomed,Leach, 1991]

A necessary and su�cient condition for the linearization of (5) with n ≥ 3 via
a point transformation is the existence of an abelian n-dimensional subalgebra
in symmetry algebra.

dmitry.lyakhov@kaust.edu.sa Algorithmic Linearizability for ODE December 21, 2017 8 / 18



Linearization Test I

LinearizationTest I

What can we do algorithmically?

generation of determining equations

dimension of solution space (by Di�erential Dimension Polynomial)

structure constants of Lie algebra [Reid, 1991]

X = truncated Taylor series → [Xi ,Xj ] =
m∑

k=1

Ck
i,jXk , 1 ≤ i < j ≤ m .

Theorem.

Eq. (5) with n ≥ 2 is linearizable by a point transformation if and only if one
of the following conditions is ful�lled:

1 n = 2, m = 8;
2 n ≥ 3, m = n + 4;
3 n ≥ 3, m ∈ {n + 1,n + 2} and derived algebra is abelian and has

dimension n.
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Linearization Test I

Algorithm: LinearizationTest I (q)

Input: q, a nonlinear di�erential equation of form (5)
Output: True, if q is linearizable and False, otherwise
1: n := order(q);
2: DS := DeterminingSystem (q);
3: IDS := InvolutiveDeterminingSystem (DS);
4: m := dim(LieSymmetryAlgebra) (IDS);
5: if n = 1 ∨ (n = 2 ∧m = 8) ∨ (n > 2 ∧m = n + 4) then
6: return True;
7: elif n > 2 ∧ (m = n + 1 ∨m = n + 2) then
8: L := LieSymmetryAlgebra (IDS);
9: DA := DerivedAlgebra (L);

10: if DA is abelian and dim(DA) = n then
11: return True;
12: �
13: �
14: return False;
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Di�erential Thomas Decomposition

Di�erential Thomas Decomposition

The di�erential Thomas decomposition is universal algorithmic tool, which
provides a characteristic decomposition of the radical of the di�erential ideal,
generated by di�erential system.

De�nition.

A di�erential system is a system S := {S=,S 6=} of di�erential equations and
(possibly) inequations of the form

S= := {g1 = 0, . . . ,gs = 0}, S 6= := {h1 6= 0, . . . ,ht 6= 0}, s ≥ 1, t ≥ 0.

The Thomas decomposition [Bachler,Gerdt,Lange-Hegermann,Robertz, 2012]
applied to a di�erential system S yields a �nite set of involutive and simple
di�erential systems:

1 every simple system has a solution under C
2 solution spaces of two di�erent systems are distinct
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Linearization Test II

LinearizationTest II

Substitution

[u = φ(x , y), t = ψ(x , y)]→ u(n)(t) +
∑

k

ak (t) u(k)(t) = 0.

By di�erentiating the equality u(ψ(x , y(x))) = φ(x , y(x))

u′(t) =
φx + φy y ′

ψx + ψy y ′
,

u′′(t) =
φxψy − φyψx

(ψx + ψy y ′)3 y ′′ +
(ψx + ψy y ′)

(
φxx + φxy y ′ + φyy (y ′)2

)
(ψx + ψy y ′)3 ,

...

u(n)(t) =
J

(ψx + ψy y ′)n+1 y (n) +
Pn(y ′, . . . , y (n−1))

(ψx + ψy y ′)2n−1 .
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Linearization Test II

LinearizationTest II

De�nition.

The di�erential system made up of the above constructed PDE set S= and of
the inequation set S 6= = {J 6= 0} will be called linearizing di�erential system.

Theorem.

Eq. (5) is linearizable via a point transformation (6) if and only if the
linearizing di�erential system is consistent, i.e. has a solution. It is equivalent
to statement that result of di�erential Thomas decomposition algorithm
applied to linearizing system is non-empty set.

Remark.

Linearizing di�erential system for given ODE (n ≥ 2) is �nite-dimensional.
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Linearization Test II

Algorithm: LinearizationTest II (q,P,H)

Input: q, a nonlinear di�erential equation of form (5) of order ≥ 2; P, a set of parameters; H, a set of
undetermined functions in (x, y)

Output: Set G of di�erential systems for functions φ and ψ in (6) and (possibly) in elements of P and
H if (5) is linearizable, and the empty set, otherwise

1: n := order(q);
2: G := ∅;
3: M := numerator(f ); N := denominator(f );
4: J := φxψy − φyψx ;

5: if n = 2 then
6: r := u′′(t) = 0;
7: A := ∅;
8: else

9: r := u(n)(t) +
∑n−3

k=0 ak (t)u(k)(t) = 0;

10: A := {a0, . . . , an−3};

11: �

12: r
by (6)
−−−−−→ y(n) +

R(y′,...,y(n−1))
J·(ψx+ψy y′)(n−2) = 0;

13: T := R · N − M · J · (ψx + ψy y′)(n−2) = 0;

14: S= := {c = 0 | c ∈ coe�s (T , {y′, . . . , y(n−1)})};
15: S= := S= ∪p∈P {px = 0, py = 0};

16: S= := S= ∪a∈A {axψy − ayψx = 0};

17: S 6= := {J 6= 0};
18: G := ThomasDecomposition (S=, S 6=);

19: return G;
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Linearization Test II

Examples

1.

y ′′′ +
3y ′

y
(y ′′ − y ′)− 3y ′′ + 2y ′ − y = 0

2.
y ′′ + F3(x , y)(y ′)3 + F2(x , y)(y ′)2 + F1(x , y) y ′ + F0(x , y) = 0
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Conclusions

Conclusions

For the �rst time, the problem of the linearization test for a wide class of
ordinary di�erential equation of arbitrary order was algorithmically
solved.

LinearizationTest I is a e�cient way to check the linearizability of ODE,
based only on algorithmic symmetry properties.

LinearizationTest II allows to check linearizability and to construct
linearizing mapping.

The second algorithm may also improve the built-in Maple solver dsolve
of di�erential equations.

Algorithms admit generalization to system of di�erential equations and
higher symmetries.
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