SIZES OF EXTENDED FORMULATIONS FOR FAMILIES OF POLYTOPES

Gennadiy Averkov Volker Kaibel Stefan Weltge OVGU Magdeburg, DE OVGU Magdeburg, DE ETH Zürich, CH

Given: $X \subseteq \mathbb{R}^d$ finite

Given: $X \subseteq \mathbb{R}^d$ finite (implicitly,

Given: $X \subseteq \mathbb{R}^d$ finite (implicitly, often $X \subseteq \{0,1\}^d$),

Given: $X \subseteq \mathbb{R}^d$ finite (implicitly, often $X \subseteq \{0,1\}^d$), $c \in \mathbb{R}^d$

Given: $X \subseteq \mathbb{R}^d$ finite (implicitly, often $X \subseteq \{0,1\}^d$), $c \in \mathbb{R}^d$ Goal: Compute min $\{\langle c, x \rangle : x \in X\}$

Given: $X \subseteq \mathbb{R}^d$ finite (implicitly, often $X \subseteq \{0,1\}^d$), $c \in \mathbb{R}^d$ Goal: Compute min $\{\langle c, x \rangle : x \in X\}$

Polyhedral approach

Replace X by conv(X) =: P

Given: $X \subseteq \mathbb{R}^d$ finite (implicitly, often $X \subseteq \{0,1\}^d$), $c \in \mathbb{R}^d$ Goal: Compute min $\{\langle c, x \rangle : x \in X\}$

Polyhedral approach

Replace X by $conv(X) =: P = \{x \in \mathbb{R}^d : Ax \le b\}$

Given: $X \subseteq \mathbb{R}^d$ finite (implicitly, often $X \subseteq \{0,1\}^d$), $c \in \mathbb{R}^d$ Goal: Compute min $\{\langle c, x \rangle : x \in X\}$

Polyhedral approach

Replace X by $conv(X) =: P = \{x \in \mathbb{R}^d : Ax \le b\}$ \sim solve a linear program

Given: $X \subseteq \mathbb{R}^d$ finite (implicitly, often $X \subseteq \{0,1\}^d$), $c \in \mathbb{R}^d$ Goal: Compute min $\{\langle c, x \rangle : x \in X\}$

Polyhedral approach

Replace X by $conv(X) =: P = \{x \in \mathbb{R}^d : Ax \le b\}$ \sim solve a linear program Typically: $Ax \le b$ has (too) many inequalities S

Given: $X \subseteq \mathbb{R}^d$ finite (implicitly, often $X \subseteq \{0,1\}^d$), $c \in \mathbb{R}^d$ Goal: Compute min $\{\langle c, x \rangle : x \in X\}$

Polyhedral approach

Replace X by $conv(X) =: P = \{x \in \mathbb{R}^d : Ax \le b\}$ \sim solve a linear program Typically: $Ax \le b$ has (too) many inequalities S

Linear extended formulation

$$P = \{x \in \mathbb{R}^d : A'x + B'y \le b' \text{ for some } y\}$$

Given: $X \subseteq \mathbb{R}^d$ finite (implicitly, often $X \subseteq \{0,1\}^d$), $c \in \mathbb{R}^d$ Goal: Compute min $\{\langle c, x \rangle : x \in X\}$

Polyhedral approach

Replace X by $conv(X) =: P = \{x \in \mathbb{R}^d : Ax \le b\}$ \sim solve a linear program Typically: $Ax \le b$ has (too) many inequalities S

Linear extended formulation

$$P = \{x \in \mathbb{R}^d : A'x + B'y \le b' \text{ for some } y\}$$

many prominent examples where this helps a lot \bigcirc

Example: spanning tree problem

Gennadiy Averkov, Volker Kaibel, Stefan Weltge

Graph with edges $1, \ldots, 5$

OVGU Magdeburg

• Spanning tree problem is the problem of optimization of a linear function over the spanning tree polytope.

- Spanning tree problem is the problem of optimization of a linear function over the spanning tree polytope.
- The spanning tree polytope has lots of facets and vertices.

- Spanning tree problem is the problem of optimization of a linear function over the spanning tree polytope.
- The spanning tree polytope has lots of facets and vertices.
- On the other hand, the spanning tree polytope has a very small extended formulation.

- Spanning tree problem is the problem of optimization of a linear function over the spanning tree polytope.
- The spanning tree polytope has lots of facets and vertices.
- On the other hand, the spanning tree polytope has a very small extended formulation.
- Thus, the spanning tree problem can be reduced to linear programming.

- Spanning tree problem is the problem of optimization of a linear function over the spanning tree polytope.
- The spanning tree polytope has lots of facets and vertices.
- On the other hand, the spanning tree polytope has a very small extended formulation.
- Thus, the spanning tree problem can be reduced to linear programming.
- There are many other examples of combinatorial problems, for which one can say: *it's just a special case of linear programming!*

Given a polytope $P \subseteq \mathbb{R}^d$, find a polytope $Q \subseteq \mathbb{R}^n$ and an affine map $\pi : \mathbb{R}^n \to \mathbb{R}^d$ such that:

Given a polytope $P \subseteq \mathbb{R}^d$, find a polytope $Q \subseteq \mathbb{R}^n$ and an affine map $\pi : \mathbb{R}^n \to \mathbb{R}^d$ such that:

• $P = \pi(Q)$

Given a polytope $P \subseteq \mathbb{R}^d$, find a polytope $Q \subseteq \mathbb{R}^n$ and an affine map $\pi : \mathbb{R}^n \to \mathbb{R}^d$ such that:

- $P = \pi(Q)$
- preferred: Q has few facets

Given a polytope $P \subseteq \mathbb{R}^d$, find a polytope $Q \subseteq \mathbb{R}^n$ and an affine map $\pi : \mathbb{R}^n \to \mathbb{R}^d$ such that:

- $P = \pi(Q)$
- preferred: Q has few facets

Using the cone \mathbb{R}^k_+

Given a polytope $P \subseteq \mathbb{R}^d$, find affine maps $\pi : \mathbb{R}^n \to \mathbb{R}^d$, $M : \mathbb{R}^n \to \mathbb{R}^k$ such that

Given a polytope $P \subseteq \mathbb{R}^d$, find a polytope $Q \subseteq \mathbb{R}^n$ and an affine map $\pi : \mathbb{R}^n \to \mathbb{R}^d$ such that:

- $P = \pi(Q)$
- preferred: Q has few facets

Using the cone \mathbb{R}^k_+

Given a polytope $P \subseteq \mathbb{R}^d$, find affine maps $\pi : \mathbb{R}^n \to \mathbb{R}^d$, $M : \mathbb{R}^n \to \mathbb{R}^k$ such that

•
$$P = \pi(Q)$$
 with $Q = \{y \in \mathbb{R}^n : M(y) \in \mathbb{R}^k_+\}$

Given a polytope $P \subseteq \mathbb{R}^d$, find a polytope $Q \subseteq \mathbb{R}^n$ and an affine map $\pi : \mathbb{R}^n \to \mathbb{R}^d$ such that:

- $P = \pi(Q)$
- preferred: Q has few facets

Using the cone \mathbb{R}^k_+

Given a polytope $P \subseteq \mathbb{R}^d$, find affine maps $\pi : \mathbb{R}^n \to \mathbb{R}^d$, $M : \mathbb{R}^n \to \mathbb{R}^k$ such that

•
$$P = \pi(Q)$$
 with $Q = \{y \in \mathbb{R}^n : M(y) \in \mathbb{R}^k_+\}$

• preferred: k small

$$P = \pi(Q), \ Q = \{y \in \mathbb{R}^n : M(y) \in \mathbb{R}^k_+\}$$

OVGU Magdeburg

$$P = \pi(Q), \ Q = \{y \in \mathbb{R}^n : M(y) \in \mathbb{R}^k_+\}$$

 \dots linear extended formulation of size k

$$P = \pi(Q), \ Q = \{y \in \mathbb{R}^n : M(y) \in \mathbb{R}^k_+\}$$

 \dots linear extended formulation of size k

Definition

The *linear extension complexity* xc(P) of a polytope P is the smallest size of a linear extended formulation for P.

$$P = \pi(Q), \ Q = \{y \in \mathbb{R}^n : M(y) \in \mathbb{R}^k_+\}$$

 \dots linear extended formulation of size k

Definition

The *linear extension complexity* xc(P) of a polytope P is the smallest size of a linear extended formulation for P.

Semidefinite extended formulations

Idea: Replace \mathbb{R}^k_+ by \mathbb{S}^k_+ $(\mathbb{S}^k_+ = \text{cone of } k \times k \text{ symmetric positive semidefinite matrices})$

OVGU Magdeburg

Semidefinite extended formulations

Idea: Replace \mathbb{R}^k_+ by \mathbb{S}^k_+ $(\mathbb{S}^k_+ = \text{cone of } k \times k \text{ symmetric}$ positive semidefinite matrices)

 $P = \pi(Q)$ with $Q = \{y \in \mathbb{R}^n : M(y) \in \mathbb{S}^k_+\}$, where $\pi : \mathbb{R}^n \to \mathbb{R}^d$ and $M : \mathbb{R}^n \to \mathbb{S}^k$ affine maps, is called a semidefinite extension of size k

OVGU Magdeburg

Semidefinite extended formulations

Idea: Replace \mathbb{R}^k_+ by \mathbb{S}^k_+ $(\mathbb{S}^k_+ = \text{cone of } k \times k \text{ symmetric}$ positive semidefinite matrices)

 $P = \pi(Q)$ with $Q = \{y \in \mathbb{R}^n : M(y) \in \mathbb{S}^k_+\}$, where $\pi : \mathbb{R}^n \to \mathbb{R}^d$ and $M : \mathbb{R}^n \to \mathbb{S}^k$ affine maps, is called a semidefinite extension of size k

Definition

The semidefinite extension complexity sxc(P) of P is the smallest k such that $P \subseteq \mathbb{R}^d$ can be represented in the above way.

Easy: $sxc(P) \le xc(P)$

OVGU Magdeburg

Easy: $sxc(P) \leq xc(P)$

There is a difference (cube)

For $P = [0,1]^d$ we have sxc(P) = d + 1 while xc(P) = 2d.

OVGU Magdeburg

Easy: $sxc(P) \leq xc(P)$

There is a difference (cube)

For $P = [0, 1]^d$ we have sxc(P) = d + 1 while xc(P) = 2d.

Is there a significant difference?.. (stable set polytopes) Let $P_{stab}(G) = conv\{x^S \in \{0,1\}^V : S \text{ stable set in } G\}.$

Easy: $sxc(P) \leq xc(P)$

There is a difference (cube)

For $P = [0, 1]^d$ we have sxc(P) = d + 1 while xc(P) = 2d.

Is there a significant difference?.. (stable set polytopes) Let $P_{\text{stab}}(G) = \text{conv}\{x^S \in \{0,1\}^V : S \text{ stable set in } G\}$. If G is *perfect*, then we have $\text{sxc}(P_{\text{stab}}(G)) \leq |V| + 1$.

Easy: $sxc(P) \leq xc(P)$

There is a difference (cube)

For $P = [0, 1]^d$ we have sxc(P) = d + 1 while xc(P) = 2d.

Is there a significant difference?.. (stable set polytopes) Let $P_{\text{stab}}(G) = \text{conv}\{x^S \in \{0,1\}^V : S \text{ stable set in } G\}$. If G is *perfect*, then we have $\text{sxc}(P_{\text{stab}}(G)) \leq |V| + 1$.

It is an open question whether $xc(P_{stab}(G))$ is polynomial in |V| if G is perfect.
• Negative results (some concrete polytopes in combinatorial optimization have a high extension complexity).

- Negative results (some concrete polytopes in combinatorial optimization have a high extension complexity).
- Results on extension complexities of arbitrary 0/1 polytope.

- Negative results (some concrete polytopes in combinatorial optimization have a high extension complexity).
- Results on extension complexities of arbitrary 0/1 polytope.
 - Rothvoß (2011): $\exists 0/1$ -polytopes P with $xc(P) \ge 2^{0.49d}$.

- Negative results (some concrete polytopes in combinatorial optimization have a high extension complexity).
- Results on extension complexities of arbitrary 0/1 polytope.
 - Rothvoß (2011): ∃ 0/1-polytopes P with xc(P) ≥ 2^{0.49d}.
 - Moreover, the linear extension complexity of a random 0/1-polytope in dimension d is exponentially high (with a very high probability).

- Negative results (some concrete polytopes in combinatorial optimization have a high extension complexity).
- Results on extension complexities of arbitrary 0/1 polytope.
 - Rothvoß (2011): ∃ 0/1-polytopes P with xc(P) ≥ 2^{0.49d}.
 - Moreover, the linear extension complexity of a random 0/1-polytope in dimension d is exponentially high (with a very high probability).
 - Briët, Dadush, Pokutta (2013): ∃ 0/1-polytopes P with sxc(P) ≥ 2^{0.24d}

- Negative results (some concrete polytopes in combinatorial optimization have a high extension complexity).
- Results on extension complexities of arbitrary 0/1 polytope.
 - Rothvoß (2011): ∃ 0/1-polytopes P with xc(P) ≥ 2^{0.49d}.
 - Moreover, the linear extension complexity of a random 0/1-polytope in dimension d is exponentially high (with a very high probability).
 - Briët, Dadush, Pokutta (2013): ∃ 0/1-polytopes P with sxc(P) ≥ 2^{0.24d}
 - Moreover, the semidefinite extension complexity of a random 0/1-polytope in dimension d is exponentially high (with a very high probability).

Theorem

Let \mathcal{P} be a family of polytopes in \mathbb{R}^d of dimensions at least one with $2 \leq |\mathcal{P}| < \infty$, and $\rho, \Delta > 0$ such that

Theorem

Let \mathcal{P} be a family of polytopes in \mathbb{R}^d of dimensions at least one with $2 \leq |\mathcal{P}| < \infty$, and $\rho, \Delta > 0$ such that

•
$$P \subseteq \rho \mathbb{B}^d$$
 for every $P \in \mathcal{P}$, and

$$\mathbb{B}^d := \{ x \in \mathbb{R}^d : \|x\|_2 \le 1 \}$$

OVGU Magdeburg

Theorem

Let \mathcal{P} be a family of polytopes in \mathbb{R}^d of dimensions at least one with $2 \leq |\mathcal{P}| < \infty$, and $\rho, \Delta > 0$ such that

- $P \subseteq \rho \mathbb{B}^d$ for every $P \in \mathcal{P}$, and
- dist $(P, P') \ge \Delta$ for every $P, P' \in \mathcal{P}$, $P \neq P'$.

$$\mathbb{B}^d := \{ x \in \mathbb{R}^d : \|x\|_2 \le 1 \}$$

dist(A, B) := max{max_{a \in A} dist(a, B), max_{b \in B} dist(b, A)}

Theorem

Let \mathcal{P} be a family of polytopes in \mathbb{R}^d of dimensions at least one with $2 \leq |\mathcal{P}| < \infty$, and $\rho, \Delta > 0$ such that

•
$$P \subseteq
ho \mathbb{B}^d$$
 for every $P \in \mathcal{P}$, and

• $dist(P, P') \ge \Delta$ for every $P, P' \in \mathcal{P}$, $P \neq P'$.

Then

$$\max_{P \in \mathcal{P}} \operatorname{sxc}(P) \geq \sqrt[4]{\frac{\log |\mathcal{P}|}{8d \left(1 + \log(2\rho/\Delta) + \log \log |\mathcal{P}|\right)}}$$

$$\mathbb{B}^d := \{ x \in \mathbb{R}^d : \|x\|_2 \le 1 \}$$

dist(A, B) := max{max_{a \in A} dist(a, B), max_{b \in B} dist(b, A)}

... and for the linear case:

Theorem

$$\max_{P \in \mathcal{P}} \mathsf{xc}(P) \geq \sqrt{\frac{\log |\mathcal{P}|}{8d \left(1 + \log(2\rho/\Delta) + \log \log |\mathcal{P}|\right)}}$$

OVGU Magdeburg

 \mathcal{P} ... family of 0/1-polytopes in \mathbb{R}^d with dim $(P) \geq 1$

 \mathcal{P} ... family of 0/1-polytopes in \mathbb{R}^d with dim $(P) \geq 1$

$$\max_{P \in \mathcal{P}} \operatorname{sxc}(P) \geq \sqrt[4]{\frac{\log |\mathcal{P}|}{8d \left(1 + \log(2\rho/\Delta) + \log \log |\mathcal{P}|\right)}}$$

OVGU Magdeburg

 \mathcal{P} ... family of 0/1-polytopes in \mathbb{R}^d with dim $(P) \geq 1$

$$\max_{P \in \mathcal{P}} \mathsf{sxc}(P) \geq \sqrt[4]{\frac{\log |\mathcal{P}|}{8d \left(1 + \log(2\rho/\Delta) + \log \log |\mathcal{P}|\right)}}$$

•
$$|\mathcal{P}| = 2^{2^d} - 2^d - 1$$

OVGU Magdeburg

 \mathcal{P} ... family of 0/1-polytopes in \mathbb{R}^d with dim $(P) \geq 1$

$$\max_{P \in \mathcal{P}} \operatorname{sxc}(P) \geq \sqrt[4]{\frac{\log |\mathcal{P}|}{8d \left(1 + \log(2\rho/\Delta) + \log \log |\mathcal{P}|\right)}}$$

•
$$|\mathcal{P}| = 2^{2^d} - 2^d - 1$$

•
$$\rho = \sqrt{d}$$

 \mathcal{P} ... family of 0/1-polytopes in \mathbb{R}^d with dim $(P) \geq 1$

$$\max_{P \in \mathcal{P}} \operatorname{sxc}(P) \geq \sqrt[4]{\frac{\log |\mathcal{P}|}{8d \left(1 + \log(2\rho/\Delta) + \log \log |\mathcal{P}|\right)}}$$

•
$$|\mathcal{P}| = 2^{2^d} - 2^d - 1$$

•
$$\rho = \sqrt{d}$$

•
$$\Delta = \frac{1}{\sqrt{d}}$$

OVGU Magdeburg

 \mathcal{P} ... family of 0/1-polytopes in \mathbb{R}^d with dim $(P) \geq 1$

$$\max_{P \in \mathcal{P}} \operatorname{sxc}(P) \geq \sqrt[4]{\frac{\log |\mathcal{P}|}{8d \left(1 + \log(2\rho/\Delta) + \log \log |\mathcal{P}|\right)}}$$

•
$$|\mathcal{P}| = 2^{2^d} - 2^d - 1$$

•
$$\rho = \sqrt{c}$$

•
$$\Delta = \frac{1}{\sqrt{d}}$$

$$\max_{P \in \mathcal{P}} \operatorname{sxc}(P) \geq \sqrt[4]{\frac{c \cdot 2^d}{\operatorname{\mathsf{poly}}(d)}} \geq 2^{0.24d}$$

Gennadiy Averkov, Volker Kaibel, Stefan Weltge

OVGU Magdeburg

defining \mathcal{P} a bit more carefully one obtains:

Corollary

Let P be a random polytope uniformly distributed in the family of all polytopes with vertices in $\{0,1\}^d$. For d large enough we have

$$\mathsf{Prob}(\mathsf{sxc}(P) \le 2^{0.24d}) \le 2^{-2^{d-1}}$$

٠

$$P = \pi(Q)$$
 with $Q = \{y \in \mathbb{R}^n : M(y) \in \mathbb{S}^k_+\}$

OVGU Magdeburg

$$P = \pi(Q)$$
 with $Q = \{y \in \mathbb{R}^n : M(y) \in \mathbb{S}^k_+\}$

We may assume that Q has a *normalized* description:

$$P = \pi(Q)$$
 with $Q = \{y \in \mathbb{R}^n : M(y) \in \mathbb{S}^k_+\}$

We may assume that Q has a *normalized* description:

• Q is bounded

$$P = \pi(Q)$$
 with $Q = \{y \in \mathbb{R}^n : M(y) \in \mathbb{S}^k_+\}$

We may assume that Q has a *normalized* description:

- Q is bounded
- $\mathbb{B}^n \subseteq Q \subseteq n\mathbb{B}^n$

$$P = \pi(Q)$$
 with $Q = \{y \in \mathbb{R}^n : M(y) \in \mathbb{S}^k_+\}$

We may assume that Q has a *normalized* description:

- Q is bounded
- $\mathbb{B}^n \subseteq Q \subseteq n\mathbb{B}^n$ (ingredient: Löwner-John-Ellipsoids)

$$P = \pi(Q)$$
 with $Q = \{y \in \mathbb{R}^n : M(y) \in \mathbb{S}^k_+\}$

We may assume that Q has a *normalized* description:

- Q is bounded
- $\mathbb{B}^n \subseteq Q \subseteq n\mathbb{B}^n$ (ingredient: Löwner-John-Ellipsoids)
- $Q = \{y \in \mathbb{R}^n : A(y) + \mathbb{I} \in \mathbb{S}^k_+\}$ where $A : \mathbb{R}^n \to \mathbb{S}^k$ is linear

$$P = \pi(Q)$$
 with $Q = \{y \in \mathbb{R}^n : M(y) \in \mathbb{S}^k_+\}$

We may assume that Q has a *normalized* description:

- Q is bounded
- $\mathbb{B}^n \subseteq Q \subseteq n\mathbb{B}^n$ (ingredient: Löwner-John-Ellipsoids)
- $Q = \{y \in \mathbb{R}^n : A(y) + \mathbb{I} \in \mathbb{S}^k_+\}$ where $A : \mathbb{R}^n \to \mathbb{S}^k$ is linear

Parametrize semidefinite ext. formulations

write $\pi(y) = \varphi(y) + t$ with $\varphi : \mathbb{R}^n \to \mathbb{R}^d$ linear

$$P = \pi(Q)$$
 with $Q = \{y \in \mathbb{R}^n : M(y) \in \mathbb{S}^k_+\}$

We may assume that Q has a *normalized* description:

- *Q* is bounded
- $\mathbb{B}^n \subseteq Q \subseteq n\mathbb{B}^n$ (ingredient: Löwner-John-Ellipsoids)
- $Q = \{y \in \mathbb{R}^n : A(y) + \mathbb{I} \in \mathbb{S}^k_+\}$ where $A : \mathbb{R}^n \to \mathbb{S}^k$ is linear

Parametrize semidefinite ext. formulations

write
$$\pi(y) = \varphi(y) + t$$
 with $\varphi : \mathbb{R}^n \to \mathbb{R}^d$ linear

 \sim every normalized semidefinite ext. formulation is defined by a triple ($A, \varphi, t)$

Parametrizations of normalized semidef. ef's

Bound parameters: $||A|| \leq 1$, $||\varphi|| \leq \rho$, $||t|| \leq \rho$, $n \leq k^2$

Parametrizations of normalized semidef. ef's

Bound parameters: $||A|| \le 1$, $||\varphi|| \le \rho$, $||t|| \le \rho$, $n \le k^2$

Bound distances: dist(P, P') $\leq \rho n^2 ||A - A'|| + n ||\varphi - \varphi'|| + ||t - t'||$

Parametrizations of normalized semidef. ef's

Bound parameters: $||A|| \leq 1$, $||\varphi|| \leq \rho$, $||t|| \leq \rho$, $n \leq k^2$

Bound distances: dist(P, P') $\leq \rho n^2 ||A - A'|| + n ||\varphi - \varphi'|| + ||t - t'||$

Normed vector space of parametrizations (A, φ, t)

For every $w = (A, \varphi, t)$ define $||w|| := \rho n^2 ||A|| + n ||\varphi|| + ||t||$

Parametrizations of normalized semidef. ef's

Bound parameters: $||A|| \leq 1$, $||\varphi|| \leq \rho$, $||t|| \leq \rho$, $n \leq k^2$

Bound distances: dist(P, P') $\leq \rho n^2 ||A - A'|| + n ||\varphi - \varphi'|| + ||t - t'||$

Normed vector space of parametrizations (A, φ, t)

For every $w = (A, \varphi, t)$ define $||w|| := \rho n^2 ||A|| + n ||\varphi|| + ||t||$

 $\rightsquigarrow \|w\| \leq 3\rho n^2$ for all normalized w

Parametrizations of normalized semidef. ef's

Bound parameters: $||A|| \leq 1$, $||\varphi|| \leq \rho$, $||t|| \leq \rho$, $n \leq k^2$

Bound distances: dist(P, P') $\leq \rho n^2 ||A - A'|| + n ||\varphi - \varphi'|| + ||t - t'||$

Normed vector space of parametrizations (A, φ, t)

For every $w = (A, \varphi, t)$ define $||w|| := \rho n^2 ||A|| + n ||\varphi|| + ||t||$

 $\sim ||w|| \le 3\rho n^2 \text{ for all normalized } w$ $\sim ||w - w'|| \ge \Delta \text{ for all normalized } w \ne w'$

Parametrizations of normalized semidef. ef's

Bound parameters: $||A|| \leq 1$, $||\varphi|| \leq \rho$, $||t|| \leq \rho$, $n \leq k^2$

Bound distances: dist(P, P') $\leq \rho n^2 ||A - A'|| + n ||\varphi - \varphi'|| + ||t - t'||$

Normed vector space of parametrizations (A, φ, t)

For every $w = (A, \varphi, t)$ define $||w|| := \rho n^2 ||A|| + n ||\varphi|| + ||t||$

 $\sim ||w|| \le 3\rho n^2 \text{ for all normalized } w$ $\sim ||w - w'|| \ge \Delta \text{ for all normalized } w \ne w'$

Dimension of the vector space: $\leq 3dk^4$

Given: family \mathcal{P} of polytopes P with $sxc(P) \leq k$

Given: family \mathcal{P} of polytopes P with $sxc(P) \leq k$

Pick a normalized parametrization w for every P

Given: family \mathcal{P} of polytopes P with $sxc(P) \leq k$

Pick a normalized parametrization w for every P

Given: family \mathcal{P} of polytopes P with $sxc(P) \leq k$

Pick a normalized parametrization w for every P

Given: family \mathcal{P} of polytopes P with $sxc(P) \leq k$

Pick a normalized parametrization w for every P

Given: family \mathcal{P} of polytopes P with $sxc(P) \leq k$

Pick a normalized parametrization w for every P

Given: family \mathcal{P} of polytopes P with $sxc(P) \leq k$

Pick a normalized parametrization w for every P

OVGU Magdeburg

Given: family \mathcal{P} of polytopes P with $sxc(P) \leq k$

Pick a normalized parametrization w for every P

Given: family \mathcal{P} of polytopes P with $sxc(P) \leq k$

Pick a normalized parametrization w for every P

 \sim there cannot be too many such w's

Gennadiy Averkov, Volker Kaibel, Stefan Weltge

OVGU Magdeburg

Given: family \mathcal{P} of polytopes P with $sxc(P) \leq k$

Pick a normalized parametrization w for every P

 \rightsquigarrow there cannot be too many such w 's

$$\rightsquigarrow |\mathcal{P}| \leq f(k, d, \rho, \Delta)$$

Extended formulations in combinatorial optimization

Known results

Main result

Application to 0/1-polytopes

Proof idea

OVGU Magdeburg