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A discrete optimization problem

Given: X ⊆ Rd finite

(implicitly, often X ⊆ {0, 1}d), c ∈ Rd

Goal: Compute min{〈c , x〉 : x ∈ X}

Polyhedral approach

Replace X by conv(X ) =: P = {x ∈ Rd : Ax ≤ b}
; solve a linear program

Typically: Ax ≤ b has (too) many inequalities /

Linear extended formulation

P = {x ∈ Rd : A′x + B ′y ≤ b′ for some y}
many prominent examples where this helps a lot ,
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Example: spanning tree problem

Graph with edges 1, . . . , 5

4

3
1

5

2

Spanning trees 0/1-Vectors

(1, 1, 1, 0, 0)

(1, 0, 0, 1, 1)

(1, 0, 1, 0, 1)

(1, 0, 1, 0, 1)

(0, 0, 1, 1, 1)

(0, 1, 1, 1, 0)

(0, 1, 1, 0, 1)

(0, 1, 0, 1, 1)
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• Spanning tree problem is the problem of optimization of a

linear function over the spanning tree polytope.

• The spanning tree polytope has lots of facets and vertices.

• On the other hand, the spanning tree polytope has a very

small extended formulation.

• Thus, the spanning tree problem can be reduced to linear

programming.

• There are many other examples of combinatorial problems, for

which one can say: it’s just a special case of linear

programming!
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Geometrically

Given a polytope P ⊆ Rd , find a polytope Q ⊆ Rn and an affine

map π : Rn → Rd such that:

• P = π(Q)

• preferred: Q has few facets

Using the cone Rk
+

Given a polytope P ⊆ Rd , find affine maps π : Rn → Rd ,

M : Rn → Rk such that

• P = π(Q) with Q = {y ∈ Rn : M(y) ∈ Rk
+}

• preferred: k small
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Linear extension complexity

P = π(Q), Q = {y ∈ Rn : M(y) ∈ Rk
+}

. . . linear extended formulation of size k

Definition

The linear extension complexity xc(P) of a polytope P is the

smallest size of a linear extended formulation for P.
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Semidefinite extended formulations

Idea: Replace Rk
+ by Sk+

Idea: (Sk+ = cone of k × k symmetric

Idea: (Sk+ = positive semidefinite matrices)

P = π(Q) with Q = {y ∈ Rn : M(y) ∈ Sk+},
where π : Rn → Rd and M : Rn → Sk affine

maps, is called a semidefinite extension of size

k

Definition

The semidefinite extension complexity sxc(P) of P is the smallest

k such that P ⊆ Rd can be represented in the above way.
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Relationship

Easy: sxc(P) ≤ xc(P)

There is a difference (cube)

For P = [0, 1]d we have sxc(P) = d + 1 while xc(P) = 2d .

Is there a significant difference?.. (stable set polytopes)

Let Pstab(G ) = conv{xS ∈ {0, 1}V : S stable set in G}.

If G is

perfect, then we have sxc(Pstab(G )) ≤ |V |+ 1.

It is an open question whether xc(Pstab(G )) is polynomial in |V | if

G is perfect.
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Known results

• Negative results (some concrete polytopes in combinatorial

optimization have a high extension complexity).

• Results on extension complexities of arbitrary 0/1 polytope.

• Rothvoß (2011): ∃ 0/1-polytopes P with xc(P) ≥ 20.49d .

• Moreover, the linear extension complexity of a random

0/1-polytope in dimension d is exponentially high (with a very

high probability).

• Briët, Dadush, Pokutta (2013): ∃ 0/1-polytopes P with

sxc(P) ≥ 20.24d

• Moreover, the semidefinite extension complexity of a random

0/1-polytope in dimension d is exponentially high (with a very

high probability).
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Our main result is a tool:

Theorem

Let P be a family of polytopes in Rd of dimensions at least one

with 2 ≤ |P| <∞, and ρ,∆ > 0 such that

• P ⊆ ρBd for every P ∈ P, and

• dist(P,P ′) ≥ ∆ for every P,P ′ ∈ P, P 6= P ′.

Then

max
P∈P

sxc(P) ≥ 4

√
log |P|

8d (1 + log(2ρ/∆) + log log |P|)

Bd := {x ∈ Rd : ‖x‖2 ≤ 1}
dist(A,B) := max{maxa∈A dist(a,B),maxb∈B dist(b,A)}
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... and for the linear case:

Theorem

max
P∈P

xc(P) ≥

√
log |P|

8d (1 + log(2ρ/∆) + log log |P|)
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Application to 0/1-polytopes

P . . . family of 0/1-polytopes in Rd with dim(P) ≥ 1

max
P∈P

sxc(P) ≥ 4

√
log |P|

8d (1 + log(2ρ/∆) + log log |P|)

• |P| = 22
d − 2d − 1

• ρ =
√
d

• ∆ = 1√
d

max
P∈P

sxc(P) ≥ 4

√
c · 2d

poly(d)
≥ 20.24d
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Application to 0/1-polytopes

defining P a bit more carefully one obtains:

Corollary

Let P be a random polytope uniformly distributed in the family of

all polytopes with vertices in {0, 1}d . For d large enough we have

Prob(sxc(P) ≤ 20.24d) ≤ 2−2
d−1
.
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Proof idea (semidefinite case)

P = π(Q) with Q = {y ∈ Rn : M(y) ∈ Sk+}

We may assume that Q has a normalized description:

• Q is bounded

• Bn ⊆ Q ⊆ nBn

(ingredient: Löwner-John-Ellipsoids)

• Q = {y ∈ Rn : A(y) + I ∈ Sk+} where A : Rn → Sk is linear

Parametrize semidefinite ext. formulations

write π(y) = ϕ(y) + t with ϕ : Rn → Rd linear

; every normalized semidefinite ext. formulation is defined by a

triple (A, ϕ, t)
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(ingredient: Löwner-John-Ellipsoids)

• Q = {y ∈ Rn : A(y) + I ∈ Sk+} where A : Rn → Sk is linear

Parametrize semidefinite ext. formulations

write π(y) = ϕ(y) + t with ϕ : Rn → Rd linear

; every normalized semidefinite ext. formulation is defined by a

triple (A, ϕ, t)

OVGU Magdeburg Gennadiy Averkov, Volker Kaibel, Stefan Weltge



Proof idea (semidefinite case)

P = π(Q) with Q = {y ∈ Rn : M(y) ∈ Sk+}

We may assume that Q has a normalized description:

• Q is bounded

• Bn ⊆ Q ⊆ nBn (ingredient: Löwner-John-Ellipsoids)
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Proof idea (2)

Parametrizations of normalized semidef. ef’s

Bound parameters: ‖A‖ ≤ 1, ‖ϕ‖ ≤ ρ, ‖t‖ ≤ ρ, n ≤ k2

Bound distances: dist(P,P ′) ≤ ρn2‖A−A′‖+ n‖ϕ−ϕ′‖+ ‖t − t ′‖

Normed vector space of parametrizations (A, ϕ, t)

For every w = (A, ϕ, t) define ‖w‖ := ρn2‖A‖+ n‖ϕ‖+ ‖t‖

; ‖w‖ ≤ 3ρn2 for all normalized w

; ‖w − w ′‖ ≥ ∆ for all normalized w 6= w ′

Dimension of the vector space: ≤ 3dk4
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Proof idea (3)

Given: family P of polytopes P with sxc(P) ≤ k

Pick a normalized parametrization w for every P

; there cannot be too many such w ’s

; |P| ≤ f (k , d , ρ,∆)
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