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Definition: mixed-integer set (Balas, Gomory, Johnson, Jeroslow)

f ∈ Rn \ Zn

Let s = (si )i∈{1,...,k}

Let y = (yj)j∈{1,...,`}

Let R = (r1, . . . , rk) ∈ Rn×k

Let P = (p1, . . . , p`) ∈ Rn×`

Then mixed-integer set of (R,P) with respect to f :

Xf (R,P) :=

{
(s, y) ∈ Rk

+ × Z`
+ : f +

k∑
i=1

si ri +
∑̀
j=1

yjpj ∈ Zn

}
.
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Motivation for Xf (R,P)

Xf (R,P) =

{
(s, y) ∈ Rk

+ × Z`
+ : f +

k∑
i=1

si ri +
∑̀
j=1

yjpj ∈ Zn

}
.

Xf (R,P) arises when we use the simplex method
for MILP in the standard form.

The variables si are continuous non-basic
variables.

The variables yj are integral non-basic variables.

The components of
z = f +

∑k
i=1 si ri +

∑`
j=1 yjpj are basic integral

variables.

x1

x2

x3
x4

x5
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Cut-generating pairs

Xf (R,P) =

{
(s, y) ∈ Rk

+ × Z`
+ : f +

k∑
i=1

si ri +
∑̀
j=1

yjpj ∈ Zn

}
.

Aim:

Generation of valid linear inequalities for Xf (R,P).

Definition: cut-generating pair (Gomory, Johnson)

Let ψ, π : Rn → R
(ψ, π) is called a cut-generating pair for f if for every choice of (R,P) one has

k∑
i=1

ψ(ri )si +
∑̀
j=1

π(pj)yj ≥ 1 ∀(s, y) ∈ Xf (R,P)

Averkov & Basu (Magdeburg & Baltimore) Lifting 2014 4 / 39



Cut-generating pairs

Xf (R,P) =

{
(s, y) ∈ Rk

+ × Z`
+ : f +

k∑
i=1

si ri +
∑̀
j=1

yjpj ∈ Zn

}
.

Aim:

Generation of valid linear inequalities for Xf (R,P).

Definition: cut-generating pair (Gomory, Johnson)

Let ψ, π : Rn → R
(ψ, π) is called a cut-generating pair for f if for every choice of (R,P) one has

k∑
i=1

ψ(ri )si +
∑̀
j=1

π(pj)yj ≥ 1 ∀(s, y) ∈ Xf (R,P)

Averkov & Basu (Magdeburg & Baltimore) Lifting 2014 4 / 39



Cut-generating pairs

Xf (R,P) =

{
(s, y) ∈ Rk

+ × Z`
+ : f +

k∑
i=1

si ri +
∑̀
j=1

yjpj ∈ Zn

}
.

Aim:

Generation of valid linear inequalities for Xf (R,P).

Definition: cut-generating pair (Gomory, Johnson)

Let ψ, π : Rn → R
(ψ, π) is called a cut-generating pair for f if for every choice of (R,P) one has

k∑
i=1

ψ(ri )si +
∑̀
j=1

π(pj)yj ≥ 1 ∀(s, y) ∈ Xf (R,P)

Averkov & Basu (Magdeburg & Baltimore) Lifting 2014 4 / 39



Cut-generating pairs

Xf (R,P) =

{
(s, y) ∈ Rk

+ × Z`
+ : f +

k∑
i=1

si ri +
∑̀
j=1

yjpj ∈ Zn

}
.

Aim:

Generation of valid linear inequalities for Xf (R,P).

Definition: cut-generating pair (Gomory, Johnson)

Let ψ, π : Rn → R

(ψ, π) is called a cut-generating pair for f if for every choice of (R,P) one has

k∑
i=1

ψ(ri )si +
∑̀
j=1

π(pj)yj ≥ 1 ∀(s, y) ∈ Xf (R,P)

Averkov & Basu (Magdeburg & Baltimore) Lifting 2014 4 / 39



Cut-generating pairs

Xf (R,P) =

{
(s, y) ∈ Rk

+ × Z`
+ : f +

k∑
i=1

si ri +
∑̀
j=1

yjpj ∈ Zn

}
.

Aim:

Generation of valid linear inequalities for Xf (R,P).

Definition: cut-generating pair (Gomory, Johnson)

Let ψ, π : Rn → R
(ψ, π) is called a cut-generating pair for f if for every choice of (R,P) one has

k∑
i=1

ψ(ri )si +
∑̀
j=1

π(pj)yj ≥ 1 ∀(s, y) ∈ Xf (R,P)

Averkov & Basu (Magdeburg & Baltimore) Lifting 2014 4 / 39



Lattice-free sets

Definition: lattice-free set

A subset B of Rn is called lattice-free (lf) if:

int(B) ∩ Zn = ∅
B is convex, closed and n-dimensional.

Definition: maximal lattice-free set

A lattice-free set B is called maximal lattice-free (max-lf) if B is not a subset of any
strictly larger lattice-free set.
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Gauge function

Definition: gauge function

The gauge function of B − f for f ∈ int(B):

ψB−f (r) := inf {α > 0 : r ∈ α(B − f )} .

r

f
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Cut-generating pairs based on the guage function

Remark:

Let B be a lf set and let f ∈ int(B). Then the pair (ψ, π) with ψ = π = ψB−f is
cut-generating.
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Example for ψ = π = ψB−f

s1r1 s2r2

y1p1

y2p2

f = (1/2, 1/2)

f = (1/2, 1/2), R = (r1, r2), P = (p1, p2), B =

{
x ∈ R2 : ‖x − f ‖ ≤ 1√

2

}
.

ψB−f (r) =
√

2‖r‖.

ψB−f (r1)s1 + ψB−f (r2)s2 + ψB−f (p1)y1 + ψB−f (p2)y2 ≥ 1.
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Strengthening cut-generating pairs

Remark:

The cut-generating pair (ψ, π) with ψ = π = ψB−f

is based on the integrality of z = f +
∑k

i=1 si ri +
∑`

j=1 yjpj ,

does not use integrality of y1, . . . , y`.

The integrality of y1, . . . , y` is an important information!
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Lifting technique

Idea of the lifting technique

Consider arbitrary w1, . . . ,wk ∈ Zn.

In view of the integrality of y :

f +
k∑

i=1

ri si +
∑̀
j=1

yjpj ∈ Zn ⇐⇒ f +
k∑

i=1

ri si +
∑̀
j=1

yj(pj + wj) ∈ Zn.

Application of ψ = ψB−f yields:

k∑
i=1

ψ(ri )si +
∑̀
j=1

ψ(pj + wj)yj ≥ 1.

Thus:

Let ψ = ψB−f and π = ψ∗ with

ψ∗(p) := inf {ψ(p + w) : w ∈ Zn} ,

Then (ψ, π) is a cut-generating pair (a stronger one than (ψ,ψ)).
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Example to the lifting technique
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Example for the lifting technique

p1

p̃1
f

p1 can be replaced by a much shorter vector p̃1.

Analogously, p2 can be replaced by a much shorter vector p̃2.
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Example to the lifting technique

s1r1 s2r2

y1p1

y2p2

y1 p̃1

y2 p̃2

f = (1/2, 1/2)
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Example to the lifting technique

Conclusion:

The inequality

s1ψ(r1) + s2ψ(r2) + y1ψ(p1) + y2ψ(p2) ≥ 1 ∀(s, y) ∈ Xf (R,P)

can be replaced by the much stronger inequality

s1ψ(r1) + s2ψ(r2) + y1ψ(p̃1) + y2ψ(p̃2) ≥ 1 ∀(s, y) ∈ Xf (R,P).
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Terminology for the lifting technique

Definition: lifting

If (ψ, π) is a cut-generating pair with ψ = ψB−f , then we call π a lifting of ψ (with
respect to (B, f )).

Remark:

ψ can have infinitely many liftings π.

Definition: dominance

For two liftings π′, π′′ of ψ, the lifting π′ is said to dominate π′′ if

π′(r) ≤ π′′(r) ∀r ∈ Rn.

Definition: minimal lifting

A lilting π of ψ is called a minimal lifting of ψ if π is not dominated by any other lifting
π′ (π′ 6= π) of ψ.
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Remarks

Remarks:

Every gauge function ψ has at least one minimal lifting.

Generally, ψ can have infinitely many minimal liftings!
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A general aim

Aim:

Given ψ = ψB−f , describe the minimal liftings of ψ in a way suitable for algorithmic
applications.

Averkov & Basu (Magdeburg & Baltimore) Lifting 2014 17 / 39



A more specific aim

An assumption:

In what follows, let B be a max-lf polytope (polytope = bounded polyhedron).

Our aim:

Describe pairs (B, f ), for which ψB−f has a unique minimal lifting.

Motivation:

Only one best lifting + good formulas for this lifting.
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Lifting region

Definition: lifting region R(B, f )

Let F(B) be the set of all faces of the max-lf polytope B.

For F ∈ F(B) \ {∅,B} and z ∈ F ∩ Zn let

SF ,z(f ) := conv({f } ∪ F ) ∩
(
z + f − conv({f } ∪ F )

)
We call

R(B, f ) =
⋃

F∈F(B)\{∅,B}

⋃
z∈F∩Zn

SF ,z(f )

the lifting region of (B, f )
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Example to the definition fo the lifting region R(B, f )

f
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R(B, f ) and ‘unique minimal lifting’

Theorem (Basu, Campêlo, Conforti, Cornuéjols, Zambelli 2013):

Let B be a max-lf polytope in Rn. Then the following conditions are equivalent:

1 ψB−f has a unique minimal lifting.

2 R(B, f ) + Zn = Rn
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(B, f ) without unique minimal lifting

f
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An example with unique minimal lifting
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Another example with a unique minimal lifting
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Invariance theorem for simplicial polytopes

Invariance theorem (Basu, Cornuéjols, Köppe 2012):

Let B be a simplicial max-lf polytope in Rn. Then exactly one of the following
alternatives is fulfilled:

1 B has a unique minimial lifting for every f ∈ int(B),

2 B has no unique minimal lifting for every f ∈ int(B).

Question (Basu, Cornuéjols, Köppe):

Does the invariance theorem also hold without the simpliciality assumption on B?
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The general invariance theorem

Invariance theorem (A., Basu 2014+):

Let B be an arbitrary max-lf polytope in Rn. Then exactily one of the following
alternatives is fulfilled:

1 B has a unique minimal lifting for every f ∈ int(B),

2 B has no unique minimal lifting for every f ∈ int(B).

Conclusion:

‘Unique minimal lifting’ is a property of B alone: the choice of f ∈ int(B) plays no role.
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Example with a unique minimal lifting
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Example with the same B and another f ∈ int(B)
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‘Unique minimal lifting’, reformulated

Torus

We introduce the n-dimensionalen torus:

Tn := Rn/Zn

Let volTn be the volume (= Haar measure) on Tn with volTn (Tn) = 1.

Remark:

The following conditions are equivalent:

B has a unique minimal lifting with respect to f

R(B, f ) + Zn = Rn

R(B, f )/Zn = Tn

volTn (R(B, f )/Zn) = 1
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Torus theorem

Torus theorem (A., Basu 2014+):

Let B be a max-lf polytope in Rn. Then the function

f ∈ B 7→ volTn (R(B, f )/Zn)

is a restriction of an affine function.

The proof of the invariance theorem:

By the torus theorem, the set

F := {f ∈ B : volTn (R(B, f )/Zn) = 1}

is a face of B.

In the case F = B, the set B has a unique minimal lifting for every f ∈ int(B).

In the case F 6= B, one has int(B) ∩ F = ∅ und so B has no unique minimal lifting
for every f ∈ int(B).

Averkov & Basu (Magdeburg & Baltimore) Lifting 2014 30 / 39
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Aims

Aim, reformulated:

complete description of max-lf polytopes B with a unique minimal lifting.

Related problems:

Finding large families of sets B with a unique minimal lifting.

Necessary conditions for ‘unique minimal lifting’.

Characterization for a fixed dimension n = 1, 2, 3, 4, . . .

Remark:

For n = 1, every max-lf polytope has a unique minimal lifting (trivial).

In dimension n = 2, there is a characterization; Dey, Wolsey 2010.

For dimensions n ≥ 3 not much is known!
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Constructions with coproduct

Definition: coproduct

Let n := n1 + n2 with n1, n2 ∈ N
Let oi be the origin of Rni , i ∈ {1, 2}
Let Ki be a nonempty compact convex subset of Rni

We call the set
K1 ♦ K2 := conv(K1 × {o2} ∪ {o1} × K2)

the coproduct of K1 and K2.

Remark:

Pyramids and double pyramids are special coproducts.
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Constructions with coproduct

Coproduct theorem (A., Basu 2014+):

Let n := n1 + n2 with n1, n2 ∈ N and let 0 < µ < 1. For i ∈ {1, 2} let Bi be an
ni -dimensional polytope in Rni and ci ∈ Bi .

Let

B :=
B1 − c1
1− µ ♦

B2 − c2
µ

+ (c1, c2).

Then the following implication holds:

1 If B1,B2 are max-lf polytopes with a unique minimal lifting, then B is also a
max-lf polytope with a unique minimal lifting.
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Example to the coproduct theorem for n1 = n2 = 1
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Constructions with the coproduct operation

Remarks:

In dimension n = 2, the coproduct theorem produces all max-lf sets with a unique
minimal lifting (up to a change of a basis of Zn).

In higher dimensions, the coproduct theorem produces all max-lf sets with a unique
minimal lifting that have been known so far (and many more).
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Limit argument as a tool

Hausdorff distance between two nonempty compact subsets K , L of Rn:

dist(K , L) := min {ρ ≥ 0 : K ⊆ L + B(o, ρ), L ⊆ K + B(o, ρ)} .

The set of all nonempty compact subsets of Rn is a complete topological space with
respect to the Hausdorff distance.

Limit Theorem: A., Basu 2014+

Sei (Bt)t∈N be a convergent sequence of maximal lattice-free subsets of Rn whose limit B
is a maximal lattice-free set.

If every Bt has a unique minimal lifting, then also B has a
unique minimal lifting.

In other words:

The family of all maximal lattice-free subsets of Rn with a unique minimal lifting is a
closed subset of the space of all maximal lattice-free subsets of Rn (endowed with the
Hausdorff metric).
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A characterization possible?

Characterizations, necessary conditions:

A complete characterization is not in sight yet, even for n = 3.

The general belief: max-lf polytopes B with a unique minimal lifting are rare.

We would like to confirm this belief, at least in a number of special cases.
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Theorem on pyramids

Theorem on pyramids (A., Basu 2014+):

Let B be max-lf pyramid in Rn with a unique minimal lifting such that the relative
interior of the basis of B contains exactly one integral point.

Then B is a simplex.

About the proof:

To show this result, we have established
contact with Peter McMullen.

We use the Venkov-Alexandrov-McMullen
Theorem about translative tiling of space
with convex bodies.

We use zonotopes and their
characterizations.

∗ picture borrowed from Wikipedia
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