Improving cuts by means of lifting

Gennadiy Averkov (Magdeburg) Joint work with: Amitabh Basu (Baltimore)

IMO Seminar, Summer 2014

イロト イヨト イヨト イヨト

2014

1 / 39

• $f \in \mathbb{R}^n \setminus \mathbb{Z}^n$

- $f \in \mathbb{R}^n \setminus \mathbb{Z}^n$
- Let $s = (s_i)_{i \in \{1,...,k\}}$

- $f \in \mathbb{R}^n \setminus \mathbb{Z}^n$
- Let $s = (s_i)_{i \in \{1,...,k\}}$
- Let $y = (y_j)_{j \in \{1,...,\ell\}}$

<ロ> (四)、(四)、(日)、(日)、

- $f \in \mathbb{R}^n \setminus \mathbb{Z}^n$
- Let $s = (s_i)_{i \in \{1,...,k\}}$
- Let $y = (y_j)_{j \in \{1,...,\ell\}}$
- Let $R = (r_1, \ldots, r_k) \in \mathbb{R}^{n \times k}$

- $f \in \mathbb{R}^n \setminus \mathbb{Z}^n$
- Let $s = (s_i)_{i \in \{1,...,k\}}$
- Let $y = (y_j)_{j \in \{1,...,\ell\}}$
- Let $R = (r_1, \ldots, r_k) \in \mathbb{R}^{n \times k}$
- Let $P = (p_1, \dots, p_\ell) \in \mathbb{R}^{n imes \ell}$

イロン イヨン イヨン イヨン

- $f \in \mathbb{R}^n \setminus \mathbb{Z}^n$
- Let $s = (s_i)_{i \in \{1,...,k\}}$
- Let $y = (y_j)_{j \in \{1,...,\ell\}}$
- Let $R = (r_1, \ldots, r_k) \in \mathbb{R}^{n \times k}$
- Let $P = (p_1, \dots, p_\ell) \in \mathbb{R}^{n imes \ell}$
- Then *mixed-integer set* of (R, P) with respect to f:

$$X_f(R,P) := \left\{ (s,y) \in \mathbb{R}^k_+ imes \mathbb{Z}^\ell_+ \ : \ f + \sum_{i=1}^k s_i r_i + \sum_{j=1}^\ell y_j p_j \in \mathbb{Z}^n
ight\}.$$

イロン イヨン イヨン イヨン

$$X_f(R,P) = \left\{(s,y)\in \mathbb{R}^k_+ imes \mathbb{Z}^\ell_+\,:\, f+\sum_{i=1}^k s_ir_i+\sum_{j=1}^\ell y_jp_j\in \mathbb{Z}^n
ight\}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

E

$$X_f(R,P) = \left\{(s,y)\in \mathbb{R}^k_+ imes \mathbb{Z}^\ell_+ \ : \ f + \sum_{i=1}^k s_i r_i + \sum_{j=1}^\ell y_j p_j \in \mathbb{Z}^n
ight\}.$$

E

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

$$X_f(R,P) = \left\{(s,y)\in \mathbb{R}^k_+ imes \mathbb{Z}^\ell_+\,:\, f+\sum_{i=1}^k s_i r_i + \sum_{j=1}^\ell y_j p_j\in \mathbb{Z}^n
ight\}.$$

• $X_f(R, P)$ arises when we use the simplex method for MILP in the standard form.

$$X_f(R,P) = \left\{(s,y)\in \mathbb{R}^k_+ imes \mathbb{Z}^\ell_+\,:\, f+\sum_{i=1}^k s_i r_i + \sum_{j=1}^\ell y_j p_j \in \mathbb{Z}^n
ight\}.$$

- $X_f(R, P)$ arises when we use the simplex method for MILP in the standard form.
- The variables *s_i* are continuous non-basic variables.

$$X_f(R,P) = \left\{(s,y) \in \mathbb{R}^k_+ imes \mathbb{Z}^\ell_+ \, : \, f + \sum_{i=1}^k s_i r_i + \sum_{j=1}^\ell y_j p_j \in \mathbb{Z}^n
ight\}.$$

- $X_f(R, P)$ arises when we use the simplex method for MILP in the standard form.
- The variables *s_i* are continuous non-basic variables.
- The variables y_j are integral non-basic variables.

$$X_f(R,P) = \left\{(s,y)\in \mathbb{R}^k_+ imes \mathbb{Z}^\ell_+\,:\, f+\sum_{i=1}^k s_ir_i+\sum_{j=1}^\ell y_jp_j\in \mathbb{Z}^n
ight\}.$$

- $X_f(R, P)$ arises when we use the simplex method for MILP in the standard form.
- The variables *s_i* are continuous non-basic variables.
- The variables y_j are integral non-basic variables.
- The components of $z = f + \sum_{i=1}^{k} s_i r_i + \sum_{j=1}^{\ell} y_j p_j$ are basic integral variables.

イロン イ団 と イヨン イヨン

$$X_f(R,P) = \left\{(s,y)\in \mathbb{R}^k_+ imes \mathbb{Z}^\ell_+\,:\, f+\sum_{i=1}^k s_i r_i + \sum_{j=1}^\ell y_j p_j\in \mathbb{Z}^n
ight\}.$$

・ロト ・回 ト ・ヨト ・ヨト

$$X_f(R,P) = \left\{(s,y)\in \mathbb{R}^k_+ imes \mathbb{Z}^\ell_+\,:\, f+\sum_{i=1}^k s_i r_i + \sum_{j=1}^\ell y_j p_j\in \mathbb{Z}^n
ight\}.$$

Aim:

Generation of valid linear inequalities for $X_f(R, P)$.

▲□→ ▲圖→ ▲温→ ▲温→

$$X_f(R,P) = \left\{(s,y)\in \mathbb{R}^k_+ imes \mathbb{Z}^\ell_+\,:\, f+\sum_{i=1}^k s_ir_i+\sum_{j=1}^\ell y_jp_j\in \mathbb{Z}^n
ight\}.$$

Aim:

Generation of valid linear inequalities for $X_f(R, P)$.

Definition: cut-generating pair (Gomory, Johnson)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$X_f(R,P) = \left\{(s,y)\in \mathbb{R}^k_+ imes \mathbb{Z}^\ell_+\,:\, f+\sum_{i=1}^k s_ir_i+\sum_{j=1}^\ell y_jp_j\in \mathbb{Z}^n
ight\}.$$

Aim:

Generation of valid linear inequalities for $X_f(R, P)$.

Definition: cut-generating pair (Gomory, Johnson)

• Let $\psi, \pi : \mathbb{R}^n \to \mathbb{R}$

イロン イヨン イヨン イヨン

$$X_f(R,P) = \left\{(s,y)\in \mathbb{R}^k_+ imes \mathbb{Z}^\ell_+\,:\, f+\sum_{i=1}^k s_ir_i+\sum_{j=1}^\ell y_jp_j\in \mathbb{Z}^n
ight\}.$$

Aim:

Generation of valid linear inequalities for $X_f(R, P)$.

Definition: cut-generating pair (Gomory, Johnson)

- Let $\psi, \pi : \mathbb{R}^n \to \mathbb{R}$
- (ψ,π) is called a *cut-generating pair* for f if for every choice of (R,P) one has

$$\sum_{i=1}^k \psi(r_i) s_i + \sum_{j=1}^\ell \pi(p_j) y_j \geq 1 \hspace{1cm} orall(s,y) \in X_f(R,P)$$

Lattice-free sets

Definition: lattice-free set

A subset B of \mathbb{R}^n is called *lattice-free* (*If*) if:

- $int(B) \cap \mathbb{Z}^n = \emptyset$
- *B* is convex, closed and *n*-dimensional.

Lattice-free sets

Definition: lattice-free set

A subset B of \mathbb{R}^n is called *lattice-free* (*If*) if:

- $int(B) \cap \mathbb{Z}^n = \emptyset$
- *B* is convex, closed and *n*-dimensional.

Definition: maximal lattice-free set

A lattice-free set B is called maximal lattice-free (max-lf) if B is not a subset of any strictly larger lattice-free set.

Gauge function

Definition: gauge function

The gauge function of B - f for $f \in int(B)$:

$$\psi_{B-f}(r) := \inf \left\{ \alpha > \mathsf{0} \ : \ r \in \alpha(B-f) \right\}.$$

Cut-generating pairs based on the guage function

Remark:

Let B be a lf set and let $f \in int(B)$. Then the pair (ψ, π) with $\psi = \pi = \psi_{B-f}$ is cut-generating.

Example for $\psi = \pi = \psi_{B-f}$

$$f = (1/2, 1/2), \quad R = (r_1, r_2), \quad P = (p_1, p_2), \quad B = \left\{ x \in \mathbb{R}^2 : \|x - f\| \le \frac{1}{\sqrt{2}} \right\}.$$

2014 8 / 39

<ロ> (日) (日) (日) (日) (日)

-)

Example for $\psi = \pi = \psi_{B-f}$

$$\psi_{B-f}(r) = \sqrt{2} \|r\|.$$

2014 8 / 39

Example for $\psi = \pi = \psi_{B-f}$

$$\psi_{B-f}(r_1)s_1 + \psi_{B-f}(r_2)s_2 + \psi_{B-f}(p_1)y_1 + \psi_{B-f}(p_2)y_2 \ge 1.$$

2014 8 / 39

Strengthening cut-generating pairs

Remark:

The cut-generating pair (ψ, π) with $\psi = \pi = \psi_{B-f}$

• is based on the integrality of $z = f + \sum_{i=1}^{k} s_i r_i + \sum_{j=1}^{\ell} y_j p_j$,

イロン イヨン イヨン イヨン

Strengthening cut-generating pairs

Remark:

The cut-generating pair (ψ, π) with $\psi = \pi = \psi_{B-f}$

- is based on the integrality of $z = f + \sum_{i=1}^{k} s_i r_i + \sum_{j=1}^{\ell} y_j p_j$,
- does not use integrality of y_1, \ldots, y_ℓ .

Remark:

The cut-generating pair (ψ,π) with $\psi=\pi=\psi_{B-f}$

- is based on the integrality of $z = f + \sum_{i=1}^{k} s_i r_i + \sum_{j=1}^{\ell} y_j p_j$,
- does not use integrality of y_1, \ldots, y_ℓ .

The integrality of y_1, \ldots, y_ℓ is an important information!

Idea of the lifting technique

< □ > < □ > < □ > < □ > < □ > < □ >

Idea of the lifting technique

• Consider arbitrary $w_1, \ldots, w_k \in \mathbb{Z}^n$.

Idea of the lifting technique

- Consider arbitrary $w_1, \ldots, w_k \in \mathbb{Z}^n$.
- In view of the integrality of *y*:

$$f + \sum_{i=1}^{k} r_i s_i + \sum_{j=1}^{\ell} \mathbf{y}_j \mathbf{p}_j \in \mathbb{Z}^n \qquad \Longleftrightarrow \qquad f + \sum_{i=1}^{k} r_i s_i + \sum_{j=1}^{\ell} \mathbf{y}_j (\mathbf{p}_j + \mathbf{w}_j) \in \mathbb{Z}^n.$$

Idea of the lifting technique

- Consider arbitrary $w_1, \ldots, w_k \in \mathbb{Z}^n$.
- In view of the integrality of y:

$$f + \sum_{i=1}^{k} r_i s_i + \sum_{j=1}^{\ell} \mathbf{y}_j \mathbf{p}_j \in \mathbb{Z}^n \qquad \Longleftrightarrow \qquad f + \sum_{i=1}^{k} r_i s_i + \sum_{j=1}^{\ell} \mathbf{y}_j (\mathbf{p}_j + \mathbf{w}_j) \in \mathbb{Z}^n.$$

• Application of $\psi = \psi_{B-f}$ yields:

$$\sum_{i=1}^k \psi(\mathbf{r}_i)\mathbf{s}_i + \sum_{j=1}^\ell \psi(\mathbf{p}_j + \mathbf{w}_j)\mathbf{y}_j \ge 1.$$

Idea of the lifting technique

- Consider arbitrary $w_1, \ldots, w_k \in \mathbb{Z}^n$.
- In view of the integrality of y:

$$f + \sum_{i=1}^{k} r_i s_i + \sum_{j=1}^{\ell} \mathbf{y}_j \mathbf{p}_j \in \mathbb{Z}^n \qquad \Longleftrightarrow \qquad f + \sum_{i=1}^{k} r_i s_i + \sum_{j=1}^{\ell} \mathbf{y}_j (\mathbf{p}_j + \mathbf{w}_j) \in \mathbb{Z}^n.$$

• Application of $\psi = \psi_{B-f}$ yields:

$$\sum_{i=1}^k \psi(\mathbf{r}_i)\mathbf{s}_i + \sum_{j=1}^\ell \psi(\mathbf{p}_j + \mathbf{w}_j)\mathbf{y}_j \ge 1.$$

Thus:

Let $\psi = \psi_{B-f}$ and $\pi = \psi^*$ with

$$\psi^*(p) := \inf \left\{ \psi(p+w) : w \in \mathbb{Z}^n \right\},$$

Then (ψ, π) is a cut-generating pair (a stronger one than (ψ, ψ)).

Example to the lifting technique

Example for the lifting technique

• p_1 can be replaced by a much shorter vector \tilde{p}_1 .

イロン イロン イヨン イヨン

2014

12 / 39
Example for the lifting technique

- p_1 can be replaced by a much shorter vector \tilde{p}_1 .
- Analogously, p_2 can be replaced by a much shorter vector \tilde{p}_2 .

イロト イヨト イヨト イヨト

Example to the lifting technique

- 4 回 > - 4 回 > - 4 回 >

Conclusion:

The inequality

$$s_1\psi(r_1)+s_2\psi(r_2)+y_1\psi(\mathbf{p_1})+y_2\psi(\mathbf{p_2})\geq 1 \hspace{1cm} orall(s,y)\in X_f(R,P)$$

can be replaced by the much stronger inequality

 $s_1\psi(r_1)+s_2\psi(r_2)+y_1\psi(\mathbf{\tilde{p}}_1)+y_2\psi(\mathbf{\tilde{p}}_2)\geq 1 \hspace{1cm} orall(s,y)\in X_f(R,P).$

Definition: lifting

If (ψ, π) is a cut-generating pair with $\psi = \psi_{B-f}$, then we call π a *lifting* of ψ (with respect to (B, f)).

イロン イヨン イヨン イヨン

Definition: lifting

If (ψ, π) is a cut-generating pair with $\psi = \psi_{B-f}$, then we call π a *lifting* of ψ (with respect to (B, f)).

Remark:

 ψ can have infinitely many liftings $\pi.$

Definition: lifting

If (ψ, π) is a cut-generating pair with $\psi = \psi_{B-f}$, then we call π a *lifting* of ψ (with respect to (B, f)).

Remark:

 ψ can have infinitely many liftings $\pi.$

Definition: dominance

For two liftings π', π'' of ψ , the lifting π' is said to *dominate* π'' if

$$\pi'(r) \leq \pi''(r) \qquad \quad \forall r \in \mathbb{R}^n.$$

・ロン ・四 と ・ ヨ と ・ ヨ と …

Definition: lifting

If (ψ, π) is a cut-generating pair with $\psi = \psi_{B-f}$, then we call π a *lifting* of ψ (with respect to (B, f)).

Remark:

 ψ can have infinitely many liftings $\pi.$

Definition: dominance

For two liftings π', π'' of ψ , the lifting π' is said to *dominate* π'' if

$$\pi'(r) \leq \pi''(r) \qquad \forall r \in \mathbb{R}^n.$$

Definition: minimal lifting

A lilting π of ψ is called a *minimal lifting* of ψ if π is not dominated by any other lifting π' ($\pi' \neq \pi$) of ψ .

イロト イヨト イヨト イヨト

Remarks

Remarks:

・ロト ・四ト ・ヨト ・ヨト

Remarks

Remarks:

 $\bullet\,$ Every gauge function ψ has at least one minimal lifting.

E

・ロト ・回ト ・ヨト ・ヨト

Remarks

Remarks:

- \bullet Every gauge function ψ has at least one minimal lifting.
- Generally, ψ can have infinitely many minimal liftings!

A general aim

Aim:

Given $\psi = \psi_{B-f}$, describe the minimal liftings of ψ in a way suitable for algorithmic applications.

E

A more specific aim

An assumption:

In what follows, let B be a max-lf polytope (polytope = bounded polyhedron).

イロト イヨト イヨト イヨト

An assumption:

In what follows, let B be a max-lf polytope (polytope = bounded polyhedron).

Our aim:

Describe pairs (B, f), for which ψ_{B-f} has a **unique** minimal lifting.

An assumption:

In what follows, let B be a max-lf polytope (polytope = bounded polyhedron).

Our aim:

Describe pairs (B, f), for which ψ_{B-f} has a **unique** minimal lifting.

Motivation:

Only one best lifting + good formulas for this lifting.

Definition: lifting region R(B, f)

イロト イヨト イヨト イヨト

Definition: lifting region R(B, f)

• Let $\mathcal{F}(B)$ be the set of all faces of the max-lf polytope B.

Definition: lifting region R(B, f)

- Let $\mathcal{F}(B)$ be the set of all faces of the max-lf polytope B.
- For $F \in \mathcal{F}(B) \setminus \{ \emptyset, B \}$ and $z \in F \cap \mathbb{Z}^n$ let

 $S_{F,z}(f) := \operatorname{conv}(\{f\} \cup F) \cap (z + f - \operatorname{conv}(\{f\} \cup F))$

・ロン ・四 と ・ ヨ と ・ ヨ と

Definition: lifting region R(B, f)

- Let $\mathcal{F}(B)$ be the set of all faces of the max-lf polytope B.
- For $F \in \mathcal{F}(B) \setminus \{ \emptyset, B \}$ and $z \in F \cap \mathbb{Z}^n$ let

$$\mathcal{S}_{F,z}(f) := \operatorname{conv}(\{f\} \cup F) \cap ig(z+f-\operatorname{conv}(\{f\} \cup F)ig)$$

• We call

$$R(B,f) = \bigcup_{F \in \mathcal{F}(B) \setminus \{\emptyset,B\}} \bigcup_{z \in F \cap \mathbb{Z}^n} S_{F,z}(f)$$

the lifting region of (B, f)

<ロ> (日) (日) (日) (日) (日)

19 / 39

2014

2014 20 / 39

Theorem (Basu, Campêlo, Conforti, Cornuéjols, Zambelli 2013): Let *B* be a max-lf polytope in \mathbb{R}^n . Then the following conditions are equivalent:

Theorem (Basu, Campêlo, Conforti, Cornuéjols, Zambelli 2013):

Let *B* be a max-lf polytope in \mathbb{R}^n . Then the following conditions are equivalent:

• ψ_{B-f} has a unique minimal lifting.

Theorem (Basu, Campêlo, Conforti, Cornuéjols, Zambelli 2013):

Let B be a max-lf polytope in \mathbb{R}^n . Then the following conditions are equivalent:

- ψ_{B-f} has a unique minimal lifting.
- $R(B,f) + \mathbb{Z}^n = \mathbb{R}^n$

・ロン ・四 と ・ ヨ と ・ ヨ と …

2014 23 / 39

2014 23 / 39

2014 23 / 39

2014 24 / 39

Averkov & Basu (Magdeburg & Baltimore)

2014 24 / 39

2014 24 / 39

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

(本間) (本語) (本語)

Let B be a simplicial max-If polytope in \mathbb{R}^n . Then exactly one of the following alternatives is fulfilled:

イロト イヨト イヨト イヨト

Let B be a simplicial max-lf polytope in \mathbb{R}^n . Then exactly one of the following alternatives is fulfilled:

() *B* has a unique minimial lifting for every $f \in int(B)$,

イロト イヨト イヨト イヨト

Let B be a simplicial max-If polytope in \mathbb{R}^n . Then exactly one of the following alternatives is fulfilled:

- **(**) *B* has a unique minimial lifting for every $f \in int(B)$,
- **2** *B* has **no unique** minimal lifting **for every** $f \in int(B)$.

<ロ> (日) (日) (日) (日) (日)

25 / 39

2014

Let B be a simplicial max-If polytope in \mathbb{R}^n . Then exactly one of the following alternatives is fulfilled:

- **(**) *B* has a unique minimial lifting for every $f \in int(B)$,
- **2** B has **no unique** minimal lifting for every $f \in int(B)$.

Question (Basu, Cornuéjols, Köppe):

Does the invariance theorem also hold without the simpliciality assumption on B?

Let B be an **arbitrary** max-If polytope in \mathbb{R}^n . Then exactly one of the following alternatives is fulfilled:

Let B be an **arbitrary** max-If polytope in \mathbb{R}^n . Then exactly one of the following alternatives is fulfilled:

() B has a unique minimal lifting for every $f \in int(B)$,

Let B be an **arbitrary** max-If polytope in \mathbb{R}^n . Then exactily one of the following alternatives is fulfilled:

- **()** B has a unique minimal lifting for every $f \in int(B)$,
- **2** *B* has **no unique** minimal lifting **for every** $f \in int(B)$.

Let B be an **arbitrary** max-If polytope in \mathbb{R}^n . Then exactily one of the following alternatives is fulfilled:

- **(**) *B* has a unique minimal lifting for every $f \in int(B)$,
- **2** B has **no unique** minimal lifting for every $f \in int(B)$.

Conclusion:

'Unique minimal lifting' is a property of B alone: the choice of $f \in int(B)$ plays no role.

2014 27 / 39

イロト イヨト イヨト イヨト

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

2014 27 / 39

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

2014 27 / 39

◆□ → ◆ ● → ◆ ● → ◆ ● → ● ● つ Q ○ 2014 27 / 39

(本間) (本語) (本語)

- 4 回 > - 4 回 > - 4 回 >

2014 28 / 39

- 4 回 > - 4 回 > - 4 回 >

2014 28 / 39

2014 28 / 39

E

Torus

• We introduce the *n*-dimensionalen torus:

$$\mathbb{T}^n := \mathbb{R}^n / \mathbb{Z}^n$$

Torus

• We introduce the *n*-dimensionalen torus:

$$\mathbb{T}^n := \mathbb{R}^n / \mathbb{Z}^n$$

• Let $\operatorname{vol}_{\mathbb{T}^n}$ be the volume (= Haar measure) on \mathbb{T}^n with $\operatorname{vol}_{\mathbb{T}^n}(\mathbb{T}^n) = 1$.

Torus

• We introduce the *n*-dimensionalen torus:

$$\mathbb{T}^n := \mathbb{R}^n / \mathbb{Z}^n$$

• Let $\operatorname{vol}_{\mathbb{T}^n}$ be the volume (= Haar measure) on \mathbb{T}^n with $\operatorname{vol}_{\mathbb{T}^n}(\mathbb{T}^n) = 1$.

Remark:

The following conditions are equivalent:

Torus

• We introduce the *n*-dimensionalen torus:

$$\mathbb{T}^n := \mathbb{R}^n / \mathbb{Z}^n$$

• Let $\operatorname{vol}_{\mathbb{T}^n}$ be the volume (= Haar measure) on \mathbb{T}^n with $\operatorname{vol}_{\mathbb{T}^n}(\mathbb{T}^n) = 1$.

Remark:

The following conditions are equivalent:

• B has a unique minimal lifting with respect to f

Torus

• We introduce the *n*-dimensionalen torus:

$$\mathbb{T}^n := \mathbb{R}^n / \mathbb{Z}^n$$

• Let $\operatorname{vol}_{\mathbb{T}^n}$ be the volume (= Haar measure) on \mathbb{T}^n with $\operatorname{vol}_{\mathbb{T}^n}(\mathbb{T}^n) = 1$.

Remark:

The following conditions are equivalent:

- B has a unique minimal lifting with respect to f
- $R(B, f) + \mathbb{Z}^n = \mathbb{R}^n$

Torus

• We introduce the *n*-dimensionalen torus:

$$\mathbb{T}^n := \mathbb{R}^n / \mathbb{Z}^n$$

• Let $\operatorname{vol}_{\mathbb{T}^n}$ be the volume (= Haar measure) on \mathbb{T}^n with $\operatorname{vol}_{\mathbb{T}^n}(\mathbb{T}^n) = 1$.

Remark:

The following conditions are equivalent:

- B has a unique minimal lifting with respect to f
- $R(B, f) + \mathbb{Z}^n = \mathbb{R}^n$

•
$$R(B,f)/\mathbb{Z}^n = \mathbb{T}^n$$

イロン イヨン イヨン イヨン

Torus

• We introduce the *n*-dimensionalen torus:

$$\mathbb{T}^n := \mathbb{R}^n / \mathbb{Z}^n$$

• Let $\operatorname{vol}_{\mathbb{T}^n}$ be the volume (= Haar measure) on \mathbb{T}^n with $\operatorname{vol}_{\mathbb{T}^n}(\mathbb{T}^n) = 1$.

Remark:

The following conditions are equivalent:

- B has a unique minimal lifting with respect to f
- $R(B, f) + \mathbb{Z}^n = \mathbb{R}^n$
- $R(B, f)/\mathbb{Z}^n = \mathbb{T}^n$
- $\operatorname{vol}_{\mathbb{T}^n}(R(B,f)/\mathbb{Z}^n) = 1$

イロン イヨン イヨン イヨン

Torus theorem (A., Basu 2014+):

Let *B* be a max-lf polytope in \mathbb{R}^n . Then the function

 $f \in B \mapsto \operatorname{vol}_{\mathbb{T}^n}(R(B, f)/\mathbb{Z}^n)$

Torus theorem (A., Basu 2014+):

Let *B* be a max-lf polytope in \mathbb{R}^n . Then the function

 $f \in B \mapsto \operatorname{vol}_{\mathbb{T}^n}(R(B, f)/\mathbb{Z}^n)$

is a restriction of an affine function.

イロン イヨン イヨン イヨン

Torus theorem (A., Basu 2014+):

Let *B* be a max-lf polytope in \mathbb{R}^n . Then the function

 $f \in B \mapsto \operatorname{vol}_{\mathbb{T}^n}(R(B, f)/\mathbb{Z}^n)$

is a restriction of an affine function.

The proof of the invariance theorem:

Torus theorem (A., Basu 2014+):

Let *B* be a max-lf polytope in \mathbb{R}^n . Then the function

 $f \in B \mapsto \operatorname{vol}_{\mathbb{T}^n}(R(B, f)/\mathbb{Z}^n)$

is a restriction of an affine function.

The proof of the invariance theorem:

• By the torus theorem, the set

 $F := \{f \in B : \operatorname{vol}_{\mathbb{T}^n}(R(B, f)/\mathbb{Z}^n) = 1\}$

is a face of B.

イロン イ団と イヨン イヨン

Torus theorem (A., Basu 2014+):

Let *B* be a max-lf polytope in \mathbb{R}^n . Then the function

 $f \in B \mapsto \operatorname{vol}_{\mathbb{T}^n}(R(B, f)/\mathbb{Z}^n)$

is a restriction of an affine function.

The proof of the invariance theorem:

• By the torus theorem, the set

$$F := \{f \in B : \operatorname{vol}_{\mathbb{T}^n}(R(B, f)/\mathbb{Z}^n) = 1\}$$

is a face of B.

• In the case F = B, the set B has a unique minimal lifting for every $f \in int(B)$.

Torus theorem (A., Basu 2014+):

Let *B* be a max-lf polytope in \mathbb{R}^n . Then the function

 $f \in B \mapsto \operatorname{vol}_{\mathbb{T}^n}(R(B, f)/\mathbb{Z}^n)$

is a restriction of an affine function.

The proof of the invariance theorem:

• By the torus theorem, the set

$$F := \{f \in B : \operatorname{vol}_{\mathbb{T}^n}(R(B, f)/\mathbb{Z}^n) = 1\}$$

is a face of B.

- In the case F = B, the set B has a unique minimal lifting for every $f \in int(B)$.
- In the case F ≠ B, one has int(B) ∩ F = Ø und so B has no unique minimal lifting for every f ∈ int(B).

Aims

Aim, reformulated:

complete description of max-lf polytopes B with a unique minimal lifting.

Aims

Aim, reformulated:

complete description of max-lf polytopes B with a unique minimal lifting.

Related problems:
Aim, reformulated:

complete description of max-lf polytopes B with a unique minimal lifting.

Related problems:

• Finding large families of sets B with a unique minimal lifting.

Aim, reformulated:

complete description of max-lf polytopes B with a unique minimal lifting.

Related problems:

- Finding large families of sets B with a unique minimal lifting.
- Necessary conditions for 'unique minimal lifting'.

イロト イヨト イヨト イヨト

Aim, reformulated:

complete description of max-lf polytopes B with a unique minimal lifting.

Related problems:

- Finding large families of sets B with a unique minimal lifting.
- Necessary conditions for 'unique minimal lifting'.
- Characterization for a fixed dimension $n = 1, 2, 3, 4, \dots$

Aim, reformulated:

complete description of max-lf polytopes B with a unique minimal lifting.

Related problems:

- Finding large families of sets B with a unique minimal lifting.
- Necessary conditions for 'unique minimal lifting'.
- Characterization for a fixed dimension $n = 1, 2, 3, 4, \dots$

Remark:

Aim, reformulated:

complete description of max-lf polytopes B with a unique minimal lifting.

Related problems:

- Finding large families of sets B with a unique minimal lifting.
- Necessary conditions for 'unique minimal lifting'.
- Characterization for a fixed dimension $n = 1, 2, 3, 4, \dots$

Remark:

• For n = 1, every max-lf polytope has a unique minimal lifting (trivial).

Aim, reformulated:

complete description of max-lf polytopes B with a unique minimal lifting.

Related problems:

- Finding large families of sets B with a unique minimal lifting.
- Necessary conditions for 'unique minimal lifting'.
- Characterization for a fixed dimension $n = 1, 2, 3, 4, \dots$

Remark:

- For n = 1, every max-lf polytope has a unique minimal lifting (trivial).
- In dimension n = 2, there is a characterization; Dey, Wolsey 2010.

Aim, reformulated:

complete description of max-If polytopes B with a unique minimal lifting.

Related problems:

- Finding large families of sets B with a unique minimal lifting.
- Necessary conditions for 'unique minimal lifting'.
- Characterization for a fixed dimension $n = 1, 2, 3, 4, \dots$

Remark:

- For n = 1, every max-lf polytope has a unique minimal lifting (trivial).
- In dimension n = 2, there is a characterization; Dey, Wolsey 2010.
- For dimensions $n \ge 3$ not much is known!

Definition: coproduct

< □ > < □ > < □ > < □ > < □ > < □ >

Definition: coproduct

• Let $n := n_1 + n_2$ with $n_1, n_2 \in \mathbb{N}$

< □ > < □ > < □ > < □ > < □ > < □ >

Definition: coproduct

- Let $n := n_1 + n_2$ with $n_1, n_2 \in \mathbb{N}$
- Let o_i be the origin of \mathbb{R}^{n_i} , $i \in \{1,2\}$

Definition: coproduct

- Let $n := n_1 + n_2$ with $n_1, n_2 \in \mathbb{N}$
- Let o_i be the origin of \mathbb{R}^{n_i} , $i \in \{1, 2\}$
- Let K_i be a nonempty compact convex subset of \mathbb{R}^{n_i}

Definition: coproduct

- Let $n := n_1 + n_2$ with $n_1, n_2 \in \mathbb{N}$
- Let o_i be the origin of \mathbb{R}^{n_i} , $i \in \{1, 2\}$
- Let K_i be a nonempty compact convex subset of \mathbb{R}^{n_i}
- We call the set

$$K_1 \Diamond K_2 := \operatorname{conv}(K_1 \times \{o_2\} \cup \{o_1\} \times K_2)$$

the coproduct of K_1 and K_2 .

Definition: coproduct

- Let $n := n_1 + n_2$ with $n_1, n_2 \in \mathbb{N}$
- Let o_i be the origin of \mathbb{R}^{n_i} , $i \in \{1, 2\}$
- Let K_i be a nonempty compact convex subset of \mathbb{R}^{n_i}
- We call the set

$$K_1 \Diamond K_2 := \operatorname{conv}(K_1 \times \{o_2\} \cup \{o_1\} \times K_2)$$

the *coproduct* of K_1 and K_2 .

Remark:

Pyramids and double pyramids are special coproducts.

Let $n := n_1 + n_2$ with $n_1, n_2 \in \mathbb{N}$ and let $0 < \mu < 1$. For $i \in \{1, 2\}$ let B_i be an n_i -dimensional polytope in \mathbb{R}^{n_i} and $c_i \in B_i$.

Let $n := n_1 + n_2$ with $n_1, n_2 \in \mathbb{N}$ and let $0 < \mu < 1$. For $i \in \{1, 2\}$ let B_i be an n_i -dimensional polytope in \mathbb{R}^{n_i} and $c_i \in B_i$. Let

$$B:=rac{B_1-c_1}{1-\mu}\,\Diamond\,rac{B_2-c_2}{\mu}+(c_1,c_2).$$

Let $n := n_1 + n_2$ with $n_1, n_2 \in \mathbb{N}$ and let $0 < \mu < 1$. For $i \in \{1, 2\}$ let B_i be an n_i -dimensional polytope in \mathbb{R}^{n_i} and $c_i \in B_i$. Let

$$B:=rac{B_1-c_1}{1-\mu}\,\Diamond\,rac{B_2-c_2}{\mu}+(c_1,c_2).$$

Then the following implication holds:

Let $n := n_1 + n_2$ with $n_1, n_2 \in \mathbb{N}$ and let $0 < \mu < 1$. For $i \in \{1, 2\}$ let B_i be an n_i -dimensional polytope in \mathbb{R}^{n_i} and $c_i \in B_i$. Let

$$B:=rac{B_1-c_1}{1-\mu}\,\Diamond\,rac{B_2-c_2}{\mu}+(c_1,c_2).$$

Then the following implication holds:

● If *B*₁, *B*₂ are max-If polytopes with a unique minimal lifting, then *B* is also a max-If polytope with a unique minimal lifting.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

2014 34 / 39

2014 34 / 39

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

2014 34 / 39

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

2014 34 / 39

Constructions with the coproduct operation

Remarks:

Constructions with the coproduct operation

Remarks:

 In dimension n = 2, the coproduct theorem produces all max-If sets with a unique minimal lifting (up to a change of a basis of Zⁿ).

Constructions with the coproduct operation

Remarks:

- In dimension n = 2, the coproduct theorem produces all max-lf sets with a unique minimal lifting (up to a change of a basis of Zⁿ).
- In higher dimensions, the coproduct theorem produces all max-If sets with a unique minimal lifting that have been known so far (and many more).

・ロン ・四 と ・ ヨン ・ ヨン

▲□→ ▲圖→ ▲温→ ▲温→

• Hausdorff distance between two nonempty compact subsets K, L of \mathbb{R}^n :

 $dist(K,L) := \min \left\{ \rho \ge 0 \ : \ K \subseteq L + \mathbb{B}(o,\rho), \ L \subseteq K + \mathbb{B}(o,\rho) \right\}.$

イロン イヨン イヨン イヨン

• Hausdorff distance between two nonempty compact subsets K, L of \mathbb{R}^n :

 $dist(K,L) := \min \left\{ \rho \ge 0 : K \subseteq L + \mathbb{B}(o,\rho), \ L \subseteq K + \mathbb{B}(o,\rho) \right\}.$

• The set of all nonempty compact subsets of \mathbb{R}^n is a complete topological space with respect to the Hausdorff distance.

• Hausdorff distance between two nonempty compact subsets K, L of \mathbb{R}^n :

 $dist(K,L) := \min \left\{ \rho \ge 0 \ : \ K \subseteq L + \mathbb{B}(o,\rho), \ L \subseteq K + \mathbb{B}(o,\rho) \right\}.$

• The set of all nonempty compact subsets of \mathbb{R}^n is a complete topological space with respect to the Hausdorff distance.

Limit Theorem: A., Basu 2014+

Sei $(B_t)_{t \in \mathbb{N}}$ be a convergent sequence of maximal lattice-free subsets of \mathbb{R}^n whose limit B is a maximal lattice-free set.

イロン イヨン イヨン イヨン

• Hausdorff distance between two nonempty compact subsets K, L of \mathbb{R}^n :

 $dist(K,L) := \min \left\{ \rho \ge 0 \ : \ K \subseteq L + \mathbb{B}(o,\rho), \ L \subseteq K + \mathbb{B}(o,\rho) \right\}.$

• The set of all nonempty compact subsets of \mathbb{R}^n is a complete topological space with respect to the Hausdorff distance.

Limit Theorem: A., Basu 2014+

Sei $(B_t)_{t \in \mathbb{N}}$ be a convergent sequence of maximal lattice-free subsets of \mathbb{R}^n whose limit B is a maximal lattice-free set. If every B_t has a unique minimal lifting, then also B has a unique minimal lifting.

イロン イヨン イヨン イヨン

• Hausdorff distance between two nonempty compact subsets K, L of \mathbb{R}^n :

 $dist(K,L) := \min \left\{ \rho \ge 0 \ : \ K \subseteq L + \mathbb{B}(o,\rho), \ L \subseteq K + \mathbb{B}(o,\rho) \right\}.$

• The set of all nonempty compact subsets of \mathbb{R}^n is a complete topological space with respect to the Hausdorff distance.

Limit Theorem: A., Basu 2014+

Sei $(B_t)_{t \in \mathbb{N}}$ be a convergent sequence of maximal lattice-free subsets of \mathbb{R}^n whose limit B is a maximal lattice-free set. If every B_t has a unique minimal lifting, then also B has a unique minimal lifting.

In other words:

The family of all maximal lattice-free subsets of \mathbb{R}^n with a unique minimal lifting is a closed subset of the space of all maximal lattice-free subsets of \mathbb{R}^n (endowed with the Hausdorff metric).

<ロ> (四) (四) (三) (三) (三) (三)

A characterization possible?

Characterizations, necessary conditions:

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Characterizations, necessary conditions:

• A complete characterization is not in sight yet, even for n = 3.

Characterizations, necessary conditions:

- A complete characterization is not in sight yet, even for n = 3.
- The general belief: max-If polytopes B with a unique minimal lifting are rare.

Characterizations, necessary conditions:

- A complete characterization is not in sight yet, even for n = 3.
- The general belief: max-lf polytopes B with a unique minimal lifting are rare.
- We would like to confirm this belief, at least in a number of special cases.

Theorem on pyramids

Theorem on pyramids (A., Basu 2014+):

Let *B* be max-If **pyramid** in \mathbb{R}^n with a unique minimal lifting such that the relative interior of the basis of *B* contains **exactly one integral point**.
Theorem on pyramids (A., Basu 2014+):

Let *B* be max-If **pyramid** in \mathbb{R}^n with a unique minimal lifting such that the relative interior of the basis of *B* contains **exactly one integral point**. Then *B* is a simplex.

<ロ> (日) (日) (日) (日) (日)

Theorem on pyramids (A., Basu 2014+):

Let *B* be max-If **pyramid** in \mathbb{R}^n with a unique minimal lifting such that the relative interior of the basis of *B* contains **exactly one integral point.** Then *B* is a simplex.

<ロ> (日) (日) (日) (日) (日)

Theorem on pyramids (A., Basu 2014+):

Let *B* be max-If **pyramid** in \mathbb{R}^n with a unique minimal lifting such that the relative interior of the basis of *B* contains **exactly one integral point.** Then *B* is a simplex.

About the proof:

• To show this result, we have established contact with Peter McMullen.

Theorem on pyramids (A., Basu 2014+):

Let *B* be max-If **pyramid** in \mathbb{R}^n with a unique minimal lifting such that the relative interior of the basis of *B* contains **exactly one integral point**. Then *B* is a simplex.

About the proof:

- To show this result, we have established contact with Peter McMullen.
- We use the Venkov-Alexandrov-McMullen Theorem about translative tiling of space with convex bodies.

Theorem on pyramids (A., Basu 2014+):

Let *B* be max-If **pyramid** in \mathbb{R}^n with a unique minimal lifting such that the relative interior of the basis of *B* contains **exactly one integral point**. Then *B* is a simplex.

About the proof:

- To show this result, we have established contact with Peter McMullen.
- We use the Venkov-Alexandrov-McMullen Theorem about translative tiling of space with convex bodies.
- We use zonotopes and their characterizations.

Theorem on pyramids (A., Basu 2014+):

Let *B* be max-If **pyramid** in \mathbb{R}^n with a unique minimal lifting such that the relative interior of the basis of *B* contains **exactly one integral point**. Then *B* is a simplex.

About the proof:

- To show this result, we have established contact with Peter McMullen.
- We use the Venkov-Alexandrov-McMullen Theorem about translative tiling of space with convex bodies.
- We use zonotopes and their characterizations.

Theorem on pyramids (A., Basu 2014+):

Let *B* be max-If **pyramid** in \mathbb{R}^n with a unique minimal lifting such that the relative interior of the basis of *B* contains **exactly one integral point**. Then *B* is a simplex.

About the proof:

- To show this result, we have established contact with Peter McMullen.
- We use the Venkov-Alexandrov-McMullen Theorem about translative tiling of space with convex bodies.
- We use zonotopes and their characterizations.

<ロ> (日) (日) (日) (日) (日)

* picture borrowed from Wikipedia

Contents

Mixed-integer set

- Definition
- Cut-generating pairs
- Unique minimal lifting

2 Results

- Invariance Theorem
- Torus Theorem
- Coproduct Theorem
- Limit Theorem
- Characterizations

<ロ> (日) (日) (日) (日) (日)